Слои атмосферы — тропосфера, стратосфера, мезосфера, термосфера и экзосфера. Небо над Великобританией озарило «неполярное сияние Атмосферное свечение

Полярным сиянием называют

A) миражи на небе;

Б) образование радуги;

B) свечение некоторых слоев атмосферы.

Правильным ответом является

1) только А

2) только Б

3) только В


Полярные сияния

Полярное сияние - одно из самых красивых явлений в природе. Формы полярного сияния очень разнообразны: то это своеобразные светлые столбы, то изумрудно-зелёные с красной бахромой пылающие длинные ленты, расходящиеся многочисленные лучи-стрелы, а то и просто бесформенные светлые, иногда цветные пятна на небе.

Причудливый свет на небе сверкает, как пламя, охватывая порой больше чем полнеба. Эта фантастическая игра природных сил длится несколько часов, то угасая, то разгораясь.

Полярные сияния чаще всего наблюдаются в приполярных регионах, откуда и происходит это название. Полярные сияния могут быть видны не только на далёком Севере, но и южнее. Например, в 1938 году полярное сияние наблюдалось на южном берегу Крыма, что объясняется увеличением мощности возбудителя свечения - солнечного ветра.

Начало изучению полярных сияний положил великий русский учёный М. В. Ломоносов, высказавший гипотезу о том, что причиной этого явления служат электрические разряды в разреженном воздухе.

Опыты подтвердили научное предположение учёного.

Полярные сияния - это электрическое свечение верхних очень разреженных слоёв атмосферы на высоте (обычно) от 80 до 1000 км. Свечение это происходит под влиянием быстро движущихся электрически заряженных частиц (электронов и протонов), приходящих от Солнца. Взаимодействие солнечного ветра с магнитным полем Земли приводит к повышенной концентрации заряженных частиц в зонах, окружающих геомагнитные полюса Земли. Именно в этих зонах и наблюдается наибольшая активность полярных сияний.

Столкновения быстрых электронов и протонов с атомами кислорода и азота приводят атомы в возбуждённое состояние. Выделяя избыток энергии, атомы кислорода дают яркое излучение в зелёной и красной областях спектра, молекулы азота - в фиолетовой. Сочетание всех этих излучений и придаёт полярным сияниям красивую, часто меняющуюся окраску. Такие процессы могут происходить только в верхних слоях атмосферы, потому что, во-первых, в нижних плотных слоях столкновения атомов и молекул воздуха друг с другом сразу отнимают у них энергию, получаемую от солнечных частиц, а во-вторых, сами космические частицы не могут проникнуть глубоко в земную атмосферу.

Полярные сияния происходят чаще и бывают ярче в годы максимума солнечной активности, а также в дни появления на Солнце мощных вспышек и других форм усиления солнечной активности, так как с её повышением усиливается интенсивность солнечного ветра, который является причиной возникновения полярных сияний.

Решение.

Полярным сиянием называют свечение некоторых слоев атмосферы, возникающее при взаимодействии с заряженными частицами солнечного ветра.

Правильный ответ указан под номером 3.

Примечание.

Заряженные частицы, летящие из космоса, двигающиеся вдоль магнитных линий Земли, сталкиваются с с частицами атмосферы, вызывая свечение последних. Проекции этих светящихся колец на поверхность Земли называются полярным сиянием.

Мираж сверхдальнего видения

Природа этих миражей изучена менее всего. Ясно, что атмосфера должна быть прозрачной, свободной от водяных паров и загрязнений. Но этого мало. Должен образоваться устойчивый слой охлажденного воздуха на некоторой высоте над поверхностью земли. Ниже и выше этого слоя воздух должен быть более теплым. Световой луч, попавший внутрь плотного холодного слоя воздуха, как бы “запертым” внутри него и распространяется в нем как по своеобразному световоду. Траектория луча должна быть все время обращена выпуклостью в сторону менее плотных областей воздуха.

Полярные сияния

Полярное сияние - свечение (люминесценции) верхних слоёв атмосфер планет, обладающих магнитосферой, вследствие их взаимодействия с заряженными частицами солнечного ветра.

В эскимосских и индийских легендах говорится, что это духи животных танцуют в небе, или что это духи падших врагов, которые хотят пробудиться вновь.

В большинстве случаев полярные сияния имеют зеленый или сине-зеленый оттенок с изредка появляющимися пятнами или каймой розового или красного цвета.

Полярные сияния наблюдают в двух основных формах - в виде лент и в виде облакоподобных пятен. Когда сияние интенсивно, оно приобретает форму лент. Теряя интенсивность, оно превращается в пятна. Однако многие ленты исчезают, не успев разбиться на пятна. Ленты как бы висят в темном пространстве неба, напоминая гигантский занавес или драпировку, протянувшуюся обычно с востока на запад на тысячи километров. Высота этого занавеса составляет несколько сотен километров, толщина не превышает нескольких сотен метров, причем он так нежен и прозрачен, что сквозь него видны звезды. Нижний край занавеса довольно резко и отчетливо очерчен и часто подкрашен в красный или розоватый цвет, напоминающий кайму занавеса, верхний - постепенно теряется в высоте и это создает особенно эффектное впечатление глубины пространства.

Различают четыре типа полярных сияний

Однородная дуга - светящаяся полоса имеет наиболее простую, спокойную форму. Она более ярка снизу и постепенно исчезает кверху на фоне свечения неба;

Лучистая дуга - лента становится несколько более активной и подвижной, она образует мелкие складки и струйки;

Лучистая полоса - с ростом активности более крупные складки накладываются на мелкие;

При повышении активности складки или петли расширяются до огромных размеров, нижний край ленты ярко сияет розовым свечением. Когда активность спадает, складки исчезают и лента возвращается к однородной форме. Это наводит на мысль, что однородная структура является основной формой полярного сияния, а складки связаны с возрастанием активности.

Часто возникают сияния иного вида. Они захватывают весь полярный район и оказываются очень интенсивными. Происходят они во время увеличения солнечной активности. Эти сияния представляются в виде беловато-зеленой шапки. Такие сияния называют шквалами.

По яркости сияния разделяют на четыре класса, отличающиеся друг от друга на один порядок (то есть в 10 раз). К первому классу относятся сияния, еле заметные и приблизительно равные по яркости Млечному Пути, сияние же четвертого класса освещают Землю так ярко, как полная Луна.

Надо отметить, что возникшее сияние распространяется на запад со скоростью 1 км/сек. Верхние слои атмосферы в области вспышек сияний разогреваются и устремляются вверх. Во время сияний в атмосфере Земли возникают вихревые электрические токи, захватывающие большие области. Они возбуждают дополнительные неустойчивые магнитные поля, так называемые магнитные бури. Во время сияний атмосфера излучает рентгеновские лучи, которые, по-видимому, являются результатом торможения электронов в атмосфере.

Интенсивные вспышки сияния часто сопровождаются звуками, напоминающими шум, треск. Полярные сияния вызывают сильные изменения в ионосфере, что в свою очередь влияет на условия радиосвязи. В большинстве случаев радиосвязь значительно ухудшается. Возникают сильные помехи, а иногда полная потеря приема.

Как возникают полярные сияния

Земля представляет собой огромный магнит, южный полюс которого находится вблизи северного географического полюса, а северный - вблизи южного. Силовые линии магнитного поля Земли, называемые геомагнитными линиями, выходят из области, прилегающей к северному магнитному полюсу Земли, охватывает земной шар и входят в него в области южного магнитного полюса, образуя тороидальную решетку вокруг Земли.

Долго считалось, что расположение магнитных силовых линий симметрично относительно земной оси. Теперь выяснилось, что так называемый «солнечный ветер» - поток протонов и электронов, излучаемых Солнцем, налетают на геомагнитную оболочку Земли с высоты около 20000 км, оттягивает ее назад, в сторону от Солнца, образуя у Земли своеобразный магнитный «хвост».

Электрон или протон, попавшие в магнитное поле Земли, движутся по спирали, как бы навиваясь на геомагнитную линию. Электроны и протоны, попавшие из солнечного ветра в магнитное поле Земли, разделяются на две части. Часть из них вдоль магнитных силовых линий сразу стекает в полярные области Земли; другие попадают внутрь тероида и движутся внутри него, вдоль замкнутой кривой. Эти протоны и электроны в конце концов по геомагнитным линиям также стекают в область полюсов, где возникает их увеличенная концентрация. Протоны и электроны производят ионизацию и возбуждение атомов и молекул газов. Для этого они имеют достаточно энергии, так как протоны прилетают на Землю с энергиями 10000-20000 эв (1эв = 1.6 10 дж), а электроны с энергиями 10-20 эв. Для ионизации же атомов нужно: для водорода - 13,56 эв, для кислорода - 13,56 эв, для азота - 124,47 эв, а для возбуждения еще меньше.

Возбужденные атомы газов отдают обратно полученную энергию в виде света, наподобие того, как это происходит в трубках с разреженным газом при пропускании через них токов.

Спектральное исследование показывает, что зеленое и красное свечение принадлежит возбужденным атомам кислорода, инфракрасное и фиолетовое - ионизованным молекулам азота. Некоторые линии излучения кислорода и азота образуются на высоте 110 км, а красное свечение кислорода - на высоте 200-400 км. Другим слабым источником красного света являются атомы водорода, образовавшие в верхних слоях атмосферы из протонов прилетевших с Солнца. Захватив электрон, такой протон превращается в возбужденный атом водорода и излучает красный свет.

Вспышки сияний происходят обычно через день-два после вспышек на Солнце. Это подтверждает связь между этими явлениями. В последнее время ученые установили, что полярные сияния более интенсивны у берегов океанов и морей.

Полярные сияния могут возникать не только на Земле, но и на других планетах.

Полярное сияние на Сатурне, комбинированный снимок в ультрафиолете и видимом свете (Hubble Space Telescope)

Но научное объяснение всех явлений, связанных с полярными сияниями, встречает ряд трудностей. Например, неизвестен точно механизм ускорения частиц до указанных энергий, не вполне ясны их траектории в околоземном пространстве, не все сходится количественно в энергетическом балансе ионизации и возбуждения частиц, не вполне ясен механизм образования свечения различных видов, неясно происхождение звуков.

Парад суеверий. Методические аспекты

В школьном курсе физики оптические атмосферные явления изучаются мало и достаточно поверхностно. Это объясняется определенной сложностью материала и сравнительно небольшим количеством часов физики, предусмотренным в средних общеобразовательных школах. Однако дополнительное изучение предмета все же возможно на факультативных занятиях. При этом большое значение играет наглядность материала и обращение к личному опыту учащихся по наблюдению за тем или иным оптическим явлением (если речь идет об учащихся средней полосы России, то чаще всего это касается наблюдение цвета неба, в том числе и при утренней и вечерней заре, радуги, реже – венцов или гало).

Изучение оптических явлений в школьном курсе осложняется еще и тем, что не все из них можно объяснить только с точки зрения физики. Иногда для объяснения приходится прибегать к другим наукам (например, при изучении северного сияния используются сведения из астрономии, которая преподается не во всех школах).

Если дело касается обучения в профильных филологических классах, то тут большее внимание следует уделять не подробному рассмотрению физических причин возникновения того или иного оптического явления, а связанных с ними легендах и суевериях. Это же относится и к учащимся 7-ых и 8-ых классов.

В профильных физико-математических классах, напротив, возможно наиболее полное и всестороннее рассмотрение указанных явлений.

Большой интерес у учащихся вызывают также оптические явления, до сих пор не получившие четкого физического объяснения. Здесь можно упомянуть о миражах сверхдальнего видения, хрономиражах, миражах-следовиках и других не совсем научных явлениях. Подобный материал лучше всего рассмотреть в специально проведенном уроке-заблуждении, либо если не позволяет время, можно затронуть его в рефераторной форме.

На современном этапе развития человечества, несложно объяснить, как возникают на небе светящиеся кресты, которые и в наш век пугают иных людей.

Научное объяснение гало - яркий пример того, как обманчива бывает порой внешняя форма какого-либо природного явления. Кажется, что-то крайне загадочное, таинственное, но при более подробном рассмотрении от «необъяснимого» не остается и следа.

Однако, на поиски рациональных объяснений пугающих оптических явлений порой уходили годы, десятилетия и даже века. Сегодня каждый человек, заинтересовавшись чем-либо, может заглянуть в справочник, полистать учебник, погрузиться в изучение специальной литературы. Но такие возможности у человечества появились совсем недавно. Конечно, в средние века все было совсем по-другому. Ведь тогда и знаний таких еще не накопили, и наукой занимались одиночки. Господствующим мировоззрением была религия, а привычным мироощущением - вера.

Французский ученный К. Фламмарион просмотрел под этим углом зрения исторические хроники. И вот что выяснилось: составители хроник нисколько не сомневались в существовании прямой причинной связи между таинственными явлениями природы и делами земными.

В 1118 году, в царствование короля английского Генриха I, на небе появились одновременно две полные луны, одна на западе, а другая на востоке. В том же году король победил в битве.

В 1120 году среди кроваво-красных облаков появились крест и человек, состоявшие из пламени. Все ожидали светопреставления, но дело кончилось только гражданской войной.

В 1156 году несколько часов подряд блестели вокруг солнца три радужных круга, а когда они исчезли, возникли три солнца. Составитель хроники усмотрел в этом явлении намек на ссору короля с епископом Кентерберийским в Англии и на разрушение после семилетней осады Милана в Италии.

В следующем году опять появились три солнца, а посредине луны был виден белый крест; понятное дело, летописец это тотчас связал с раздорами, сопровождавшими избрание нового папы римского.

В январе 1514 года в Вюртемберге были видны три солнца, из коих среднее больше боковых. В то же время на небе появлялись окровавленные и пылающие мечи. В марте того же года опять были видны три солнца и три луны. Тогда же турки были разбиты персами в Армении.

Чаще всего небесным явлениям приписывалось дурное значение.

В связи с этим в истории человечества зафиксирован любопытный факт. В 1551 году немецкий город Магдебург был осажден войсками испанского короля Карла V. Стойко держались защитники города, уже больше года длилась осада. Наконец раздраженный король отдал приказ готовиться к решительной атаке. Но тут произошло невиданное: за несколько часов до штурма над осажденным городом засияли три солнца. Смертельно напуганный король решил, что Магдебург защищают небеса, и приказал снять осаду.

Нечто подобное известно и в Русской истории. Так, в «Слове о полку Игореве» упоминается, что перед наступлением половцев и пленением Игоря «четыре солнца засияли над русской землей». Воины восприняли это как знак надвигающейся большой беды.

В других преданиях сообщается о том, что Иван Грозный увидел предзнаменование своей смерти в «крестном знамении на небе».

Были ли все эти явления на самом деле - не так уж для нас теперь важно. Важно, что с их помощью, на их основе истолковывались реальные исторические события; что люди смотрели тогда на мир сквозь призму своих искаженных представлений и потому видели то, что хотели видеть. Их фантазия порой не знала границ. Фламмарион назвал невероятные фантастические картины, нарисованные авторами хроник, «образчиками артистического преувеличения».

Хрономиражи

Хрономиражи – таинственные явления, не получившие научного объяснения. Никакими известными законами физики нельзя объяснить, почему миражи могут отражать события, происходящие на некотором расстоянии не только в пространстве, но и во времени. Особую известность получили миражи когда-то прошедших на земле сражений и битв. В ноябре 1956 года несколько туристов заночевали в горах Шотландии. Часа в три утра они проснулись от странного шума, выглянули из палатки и увидели десятки шотландских стрелков в старинной военной форме, которые, стреляя, бежали через каменистое поле! Потом видение исчезло, не оставив никаких следов, но уже через сутки повторилось. Шотландские стрелки, все израненные, брели по полю, спотыкаясь о камни.

И это не единственное свидетельство подобного явления. Так, знаменитую битву при Ватерлоо (18 июня 1815 года) наблюдали неделю спустя жители бельгийского городка Вервье. Расстояние от Ватерлоо до Вервье по прямой линии составляет более 100 км. Известны случаи, когда подобные миражи наблюдались и на больших расстояниях - до 1000 км.

По одной из теорий, при особом стечении природных факторов зрительная информация запечатлевается во времени и пространстве. А при совпадении определенных атмосферных, погодных и т.п. условий она вновь становится зримой для посторонних наблюдателей.

Миражи - следовики

Класс явлений, также не получивший научного обоснования. К нему относят миражи, которые после своего исчезновения оставляют материальные следы. Известно, что в марте 1997 г. С неба в Англии падали свежие зрелые орехи. Выдвигают несколько объяснений природы возникновения данных следов.

Первое – эти следы не имеют к миражу непосредственного отношения. «После этого» - не значит «вследствие этого». Самое сложное – установление общей достоверности самих фактов подобных явлений.

Другое объяснение – разность температурных слоев приводит к образованию вихревого эффекта, засасывающего в атмосферу различный мусор. Движение воздушных потоков доставляет «поглощенное» в область образования миража. После выравнивания температур «небесная картина» исчезает, а мусор выпадает на землю.

Сложно говорить о достоверности таких явлений. Но определенный «мистический» интерес они все же вызывают. А потому вполне могут рассматриваться на уроке-заблуждении.

Изучая различные явления, связанные с прохождением света в атмосфере, ученые используют добытые знания для развития науки. Так, наблюдение венцов помогает определять величину кристалликов льда и капель воды, из которых образуются различные облака. Наблюдения венцов и гало дает также возможность предсказания погоды. Так, если появившийся венец постепенно уменьшается, можно ожидать осадки. Увеличение венцов, наоборот, предвещает наступление сухой и малооблачной погоды.

Заключение

Физическая природа света интересовала людей с незапамятных времён. Многие выдающиеся ученные, на всём протяжении развития научной мысли, бились над решением этой проблемы. Со временем, была открыта и сложность обыкновенного белого луча, и его способность менять своё поведение в зависимости от окружающей среды, и его умение проявлять признаки, присущие как вещественным элементам, так и природе электромагнитных излучений. Световой луч, подвергнутый различным техническим воздействиям, стал применяться в науке и технике в диапазоне от режущего инструмента, способного с точностью до микрона обработать нужную деталь, до невесомого канала передачи информации с, практически, неисчерпаемыми возможностями.

Но, прежде чем утвердился совремённый взгляд на природу света, и световой луч нашёл своё применение в жизни человека, были выявлены, описаны, научно обоснованы и экспериментально подтверждены многие оптические явления, повсеместно возникающие в атмосфере земли, от известной каждому радуги, до сложных, периодических миражей. Но, не смотря на это, причудливая игра света всегда привлекала и привлекает человека. Никого не оставляет равнодушным ни созерцание зимнего гало, ни яркого солнечного заката, ни широкой, в пол неба, полосы северного сияния, ни скромной лунной дорожки на водной глади. Световой луч, проходя сквозь атмосферу нашей планеты, не просто освещает её, но и придаёт ей неповторимый вид, делая прекрасной.

Конечно, в атмосфере нашей планеты происходит значительно больше оптических явлений, чем рассматривается в этой курсовой работе. Среди них есть как хорошо знакомые нам и разгаданные учёными, так и те, которые ещё ждут своих первооткрывателей. И нам остаётся лишь надеяться, что, со временем, мы станем свидетелями всё новых и новых открытий в области оптических атмосферных явлений, свидетельствующих о многогранности обыкновенного светового луча.

Список использованной литературы

    Гершензон Е.М., Малов Н.Н., Мансуров А.Н. «Курс общей физики»

    Королев Ф.А. «Курс физики» М., «Просвещение» 1988 г.

    «Физика 10», авторы - Г. Я. Мякишев Б. Б. Буховцев, издательство «Просвещение», Москва, 1987 год. атмосфере идеологических чисток психотехника фактически прекратила... - зрение) - субъективные световые явления (ощущения), не имеющие характера...

Собственное свече́ние атмосфе́ры — очень слабое излучение света атмосферой планеты.

Свечение неба над горизонтом, снятое с борта МКС.

В случае с атмосферой Земли этот оптический феномен приводит к тому, что ночное небо никогда не является полностью тёмным, даже если исключить свет звёзд и рассеянный свет Солнца с дневной стороны.

Свечение неба является в 1000 раз более интенсивным в дневное время, однако изучение феномена дневного свечения атмосферы затруднено из-за того, что оно теряется в ярком свете Солнца.

Феномен свечения неба был открыт в 1868 году шведским учёным Андерсом Ангстремом . С тех пор производилось его наблюдение и лабораторное исследование. Были открыты различные химические реакции, в ходе которых возможно образование электромагнитного излучения, и выделены те процессы, которые могут происходить в атмосфере Земли. Астрономическими наблюдениями было подтверждено существование именно такого излучения.

А́ндерс Йо́нас А́нгстрем (Онгстрём; швед. Anders Jonas Ångström; 13 августа 1814, Лёгдё, Медельпад — 21 июня 1874, Уппсала) — шведский ученый-астрофизик, один из основателей спектрального анализа.

Свечение неба вызывается различными процессами в верхних слоях атмосферы, в частности, рекомбинацией ионов, образовавшихся в процессе фотоионизации под воздействием излучения Солнца в дневное время; люминесценцией, вызываемой прохождением космических лучей через верхние слои атмосферы, а также хемилюминесценцией, связанной в основном с реакциями, идущими между кислородом, азотом и гидроксильным радикалом на высоте нескольких сотен километров.

Ночью свечение атмосферы может быть достаточно ярким, чтобы быть замеченным наблюдателем, и обычно имеет голубоватый цвет. Хотя свечение атмосферы является практически равномерным, для наземного наблюдателя оно кажется наиболее ярким на расстоянии 10 градусов от горизонта.

Одним из механизмов свечения атмосферы является соединение атома азота с атомом кислорода с формированием молекулы окиси азота (NO). В ходе данной реакции излучается фотон. Другими веществами, способными внести вклад в свечение неба, являются гидроксильный радикал (OH), молекулярный кислород, натрий и литий.

Ночное свечение не является постоянным по яркости. Вероятно, его интенсивность зависит от геомагнитной активности.

Комета Лавджоя, проходящая за свечением неба Земли 22 декабря 2011 года.

Алекс Ривест. Земля, которую вы никогда не видели прежде

Интервальное видео, которое знакомит нас с удивительным явлением — собственным свечением земной атмосферы.

Мы уже начали привыкать к замечательным снимкам Земли, полученным космонавтами и астронавтами с борта МКС. А зря! Некоторые из них выглядят очень необычно. Прежде всего это касается снимков ночной стороны Земли. На фотографиях, полученных с большой экспозицией, прекрасно видны яркие огни городов, грозы, полярные сияния. Но помимо них мы наблюдаем совершенно удивительное явление — собственное свечение земной атмосферы.

Оказывается, ночью на нашей планете никогда не бывает полностью темно. Даже если исключить городскую засветку, Луну и звезды, все еще будет наблюдаться чрезвычайно слабое (но вполне регистрируемое) свечение атмосферы. Вызывается оно целым рядом факторов, среди которых важную роль играют Солнце (ночью происходит рекомбининация ионов воздуха, родившихся днем под воздействием света звезды), космические лучи и химические реакции с участием кислорода, азота и гидроксильных радикалов.

Американский фотограф Алекс Ривест (Alex Rivest) предлагает нам взглянуть на этот феномен с точки зрения искусства. Он собрал большое количество фотографий ночной Земли и создал из них замечательное интервальное видео, которое мы и предлагаем вашему вниманию.


Структура собственного свечения атмосферы довольно сложна (см., например, на 00:37 после начала видео). Мы видим, что феномен образуют три слоя свечения: красный слой (самый протяженный и разреженный), желтый слой и зеленый (тонкая прослойка между красным и желтым). Различные цвета обусловлены свечением различных атомов. Так, за желтый цвет ответственны метеоры, которые, сгорая в верхних слоях атмосферы, распыляют атомы натрия — они-то и светятся желтым. Зеленое свечение производят атомы азота и кислорода. Наконец, красное свечение порождается ионами гидроксила -OH.

Красное, зеленое и желтое свечение ночной атмосферы Земли. Фото: NASA

При просмотре видео мы не раз замечаем еще один вид свечения земной атмосферы: полярные сияния (например, спустя 00:24 после начала). Полярные сияния вызывает солнечный ветер — частицы высокой энергии, летящие от Солнца и сталкивающиеся с атмосферой Земли на высотах около 100 км.

Большая Вселенная

Астрономы-любители и охотники за полярным сиянием сообщили, что видели зеленое свечение в небе над Великобританией. Феномен, который легко спутать с aurora borealis , называется собственным свечением атмосферы (англ. airglow ).

KAMRUL ARIFIN | shutterstock

Это небесное свечение естественной природы происходит все время и по всему земному шару. Существует три его типа: дневное (dayglow ), сумеречное (twilightglow ) и ночное (nightglow ). Каждое из них является результатом взаимодействия солнечного света с молекулами в нашей атмосфере, но имеет свой особый способ формирования.

Дневное свечение образуется, когда солнечный свет падает на атмосферу в дневное время. Некоторая его часть поглощается молекулами в атмосфере, что дает им избыток энергии, которую они затем высвобождают как свет, либо на такой же, либо на чуть более низкой частоте (цвет). Этот свет гораздо слабее обычного дневного света, поэтому мы не можем его увидеть невооруженным глазом.

Сумеречное свечение по сути представляет собой то же самое, что и дневное, но в этом случае Солнцем освещаются только верхние слои атмосферы. Остальная ее часть и наблюдатели на Земле находятся в темноте. В отличие от дневного свечения, twilightglow видно невооруженным глазом.

Хемолюминесценция

Ночное же свечение порождается не солнечным светом, падающим на ночную атмосферу, а иным процессом, который называется хемолюминесценция.

Солнечный свет в течение дня накапливает энергию в атмосфере, содержащей молекулы кислорода. Эта дополнительная энергия заставляет молекулы кислорода распадаться на отдельные атомы. В основном это происходит на высоте около 100 км. Однако атомарный кислород не в состоянии легко избавиться от этого избытка энергии и в результате на несколько часов превращается в своеобразный «энергетический магазин».

В конце концов атомарному кислороду удается «рекомбинироваться», вновь образуя кислород молекулярный. При этом он высвобождает энергию, снова в виде света. Так возникают несколько различных цветов, включая ночное зеленое излучение, которое на самом деле не очень яркое, но самое яркое из всех свечений этой категории.

Световое загрязнение и облачность может помешать наблюдению. Но если повезет, ночное свечение можно увидеть невооруженным глазом или запечатлеть на фотографии с помощью длинной экспозиции.

Yuri Zvezdny | shutterstock

Чем отличаются свечения от полярных сияний?

Зеленое свечение ночного неба очень похоже на знаменитый зеленый цвет, который мы видим в северном сиянии, что неудивительно, так как они производятся одними и теми же молекулами кислорода. Однако эти два явления никак не связаны между собой.

Полярное сияние. ZinaidaSopina | shutterstock

Полярное сияние образуется, когда заряженные частицы, такие как электроны, «обстреливают» атмосферу Земли. Эти заряженные частицы, которые стартовали с Солнца и ускорились в магнитосфере Земли, сталкиваются с атмосферными газами и передают им энергию, вынуждая газы излучать свет.

Кроме того, полярные сияния, как известно, расположены в виде кольца вокруг магнитных полюсов (авроральный овал), в то время как ночные свечения распространены по всему небу. Сияния очень структурированы (из-за магнитного поля Земли), а свечения в целом довольно равномерны. Степень сияний зависит от силы солнечного ветра, а свечения атмосферы происходят постоянно.

Авроральный овал. NOAA

Но почему же тогда наблюдатели из Великобритании видели его только на днях? Дело в том, что яркость свечения коррелирует с уровнем ультрафиолетового (УФ) света, исходящего от Солнца, который изменяется с течением времени. Сила свечения зависит от времени года.

Чтобы увеличить свои шансы на обнаружение небесного свечения, следует запечатлеть темное и ясное ночное небо в режиме длинной выдержки. Свечение можно увидеть в любом направлении, свободном от светового загрязнения, в 10–20 градусах над горизонтом.

Земная атмосфера являет собой газовою оболочку планеты. Нижняя граница атмосферы проходит возле поверхности земли (гидросфера и земная кора), а верхняя граница является область соприкасающеюся космического пространства (122 км). В себе атмосфера содержит много разных элементов. Основные из них: 78% азот, 20% кислород, 1% аргон, углекислый газ, галий неона, водород и тд. Интересные факты можно посмотреть в конце статьи или перейдя по .

Атмосфера имеет четко выраженные слои воздуха. Слои воздуха отличаются между собой температурой, разностью газов и их плотностью и . Нужно отметить, что слои стратосфера и тропосфера защищают Землю от солнечной радиации. В высших слоях живой организм может получить смертельную дозу ультрафиолетового солнечного спектра. Для быстрого перехода к нужному слою атмосферы, нажмите на соответствующий слой:

Тропосфера и тропопауза

Тропосфера — температура, давление, высота

Верхняя граница держится на отметке 8 — 10 км примерно. В умеренных широтах 16 — 18 км, а в полярных 10 — 12 км. Тропосфера — это нижний главный слой атмосферы. В этом слое находится более 80% всей массы атмосферного воздуха и близко 90% всей водяной пары. Именно в тропосфере возникают конвекция и турбулентность, образуются , происходят циклоны. Температура понижается с ростом высоты. Градиент: 0,65 °/100 м. Нагретая земля и вода нагревают прилагающий воздух. Нагретый воздух поднимается в верх, охлаждается и образует облака. Температура в верхних границах слоя может достигать — 50/70 °C.

Именно в этом слое происходят изменения климатических погодных условий. В нижнюю границу тропосферы называют приземным , так как он имеет много летучих микроорганизмов и пыли. Скорость ветра увеличивается с увеличением высоты в этом слое.

Тропопауза

Это переходной слой тропосферы к стратосфере. Здесь прекращается зависимость снижения температуры с повышением высоты. Тропопауза — минимальная высота, где вертикальный градиент температуры падает до 0,2°C/100 м. Высота тропопаузы зависит от сильных климатических проявлений, таких как циклоны. Над циклонами высота тропопаузы понижается, а над антициклонами повышается.

Стратосфера и Стратопауза

Высота слоя стратосферы примерно от 11 до 50 км. Присутствует незначительное изменение температуры на высоте 11 — 25 км. На высоте 25 — 40 км наблюдается инверсия температуры, от 56,5 поднимается до 0,8°C. От 40 км до 55 температура держится на отметке 0°C. Эту область называют — Стратопаузой .

В Стратосфере наблюдают воздействие солнечной радиации на молекулы газа, они диссоциируют на атомы. В этом слое нету почти водяного пара. Современные сверхзвуковые коммерческие самолёты летают на высоте до 20 км из-за стабильных полетных условий. Высотные метеозонды поднимаются на высоту 40 км. Здесь присутствуют устойчивые воздушные течения, скорость их достигает 300 км/ч. Также в этом слое сосредоточен озон , слой который поглощает ультрафиолетовые лучи.

Мезосфера и Мезопауза — состав, реакции, температура

Слой мезосферы начинается примерно на высоте 50 км и заканчивается на отметке 80 — 90 км. Температуры понижается с повышением высоты примерно 0,25-0,3°C/100 м. Основным энергетическим действием здесь является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов (имеет 1 или 2 непарных электронная) т.к. они реализуют свечение атмосферы.

Почти все метеоры сгорают в мезосфере. Ученые назвали эту зону — Игноросферой . Эту зону тяжело исследовать, так как аэродинамическая авиация здесь очень плохая из-за плотности воздуха, которая здесь в 1000 раз меньше чем на Земле. А для запуска искусственных спутников плотность еще очень высокая. Исследования проводят с помощью метеорологических ракет, но это извращенность. Мезопауза переходной слой между мезосферой и термосферой. Имеет температуру минимум -90°C.

Линия Кармана

Линию кармана называют границей между атмосферой Земли и космосом. Согласно международной авиационной федерацией (ФАИ) высота этой границы — 100 км. Такое определения дали в честь американского ученого Теодора Фон Кармана. Он определил, что примерно на этой высоте плотность атмосферы настолько мала, что аэродинамическая авиация здесь становится невозможная, так как скорость летательного устройства должна быть большей первой космической скорости . На такой высоте теряет смысл понятие звуковой барьер. Здесь управлять летательным аппаратом можно лишь за счет реактивных сил.

Термосфера и Термопауза

Верхняя граница этого слоя примерно 800 км. Температура растёт примерно до высоты 300 км где достигает порядка 1500 К. Выше температура остается неизменной. В этом слое происходит полярное сияние — происходит в следствии воздействия солнечной радиации на воздуха. Также этот процесс называют ионизацией атмосферного кислорода.

Из-за малой разряженности воздуха полёты выше линии Кармана реализуемы только по баллистических траекториях. Все пилотируемые орбитальные полеты (кроме полетов на Луну) происходят в этом слое атмосферы.

Экзосфера — плотность, температура, высота

Высота экзосферы выше 700 км. Здесь газ сильно разрежён,и происходит процесс диссипации — утечка частиц в межпланетное пространство. Скорость таких частиц может достигать 11,2 км/сек. Рост солнечной активности приводит к расширению толщины этого слоя.

  • Газовая оболочка не улетает в космос из-за земного притяжения. Воздух состоит из частиц, которые имеют свою массу. Из закона тяготения можно вынести то, что каждый объект обладающий массой притягивается к Земли.
  • Закон Буйс-Баллота гласит, что если находиться в Северном полушарии и встать спиной к ветру, то справа будет располагаться зона высокого давления, а слева - низкого. В Южном же полушарии все будет наоборот.