Космические телескопы. Крупнейшие космические телескопы Для чего запускают телескопы в космосе


24 апреля 1990 года на орбиту Земли был запущен орбитальный телескоп "Хаббл" , сделавший за почти четверть века своего существования немало великих открытий, проливших нам свет на Вселенную, ее историю и тайны. И сегодня мы расскажем про эту ставшую к нашему времени легендарной орбитальную обсерваторию, ее историю , а также про некоторые важные открытия , сделанные с ее помощью.

История создания

Идея размещения телескопа , где его работе ничего не будет мешать, появилась еще в межвоенные годы в работах немецкого инженера Германа Оберта, но теоретическое обоснование этому выдвинул в 1946 году американский астрофизик Лейман Спитцер. Его так захватила идея, что он посвятил ее реализации большую часть своейнаучной карьеры.

Первый орбитальный телескоп был запущен Великобританией в 1962 году, а соединенными Штатами Америки – в 1966. Успехи этих аппаратов окончательно убедили мировую научную общественность в необходимость постройки большой космической обсерватории, способной заглянуть даже в самую глубь Вселенной.

Работа над проектом, который со временем превратился в телескоп «Хаббл», началась в 1970 году, но долгое время финансирование не было достаточным для успешной реализации задумки. Бывали периоды, когда американские власти вообще приостанавливали финансовые потоки.

Подвешенное состояние закончилось в 1978 году, когда Конгресс США выделил на создание орбитальной лаборатории 36 миллионов долларов. Тогда же началась активная работа по проектированию и строительству объекта, к которой подключились многие научные центры и технологические компании, всего тридцать два учреждения по всему миру.


Изначально планировалось вывести телескоп на орбиту в 1983, потом эти сроки перенесли на 1986. Но катастрофа космического челнока «Челленджер» 28 января 1986 вынудила еще раз пересмотреть дату запуска объекта. В результате «Хаббл» отправился в Космос 24 апреля 1990 на шаттле «Дискавери».

Эдвин Хаббл

Уже в начале восьмидесятых годов проектируемый телескоп получил имя в честь Эдвина Пауэлла Хаббла – великого американского астронома, внесшего огромный вклад в развитие нашего понимания, о том, что такое Вселенная, а также какой должна быть астрономия и астрофизика будущего.



Это именно Хаббл доказал, что во Вселенной есть и другие галактики, помимо Млечного пути, а также заложил основу теории Расширения Вселенной.

Эдвин Хаббл умер в 1953 году, но стал одним из основателей американской школы астрономии, ее самым известным представителем и символом. Недаром в честь этого великого ученого назван не только телескоп, но и астероид.

Самые значимые открытия телескопа «Хаббл»

В девяностых годах двадцатого века телескоп «Хаббл» стал одним из самых знаменитых и упоминаемых в прессе рукотворных объектов. Фотографии, сделанные этой орбитальной обсерваторией, печатали на первых полосах и обложках не только научные и научно-популярные журналы, но и обычная пресса, в том числе, желтые газеты.



Открытия, сделанные при помощи «Хаббла», значительно перевернули и расширили человеческое представление о Вселенной и продолжают это делать до сих пор.

Телескоп сфотографировал и отправил на Землю более миллиона снимков с высоким разрешением, позволяющих заглянуть в такие глубины Вселенной, куда невозможно забраться иным способом.

Одним из первых поводов у СМИ заговорить о телескопе «Хаббл» стали его снимки кометы Шумейкеров-Леви 9, которая в июле 1994 года столкнулась с Юпитером. Примерно за год до падения при наблюдении за этим объектом орбитальная обсерватория зафиксировала его разделение на несколько десятков частей, которые затем и падали в течение недели на поверхность планеты-гиганта.



Размеры «Хаббла» (диаметр зеркала – 2,4 метра) позволяет ему проводить исследования в самых разных областях астрономии и астрофизики. К примеру, с его помощью были сделаны снимки экзопланет (планет, находящихся за пределами Солнечной системы), наблюдать за агонией старых звезд и рождением новых, находить загадочные черные дыры, исследовать историю Вселенной, а также проверять актуальные научные теории, подтверждая их или опровергая.

Модернизация

Несмотря на запуск и других орбитальных телескопов, «Хаббл» продолжает оставаться главным инструментом звездочетов нашего времени, постоянно поставляя им новую информацию из самых отдаленных уголков Вселенной.

Однако со временем в эксплуатации «Хаббла» начали возникать проблемы. К примеру, уже в первую неделю работы телескопа оказалось, что у главного его зеркала есть дефект, не позволяющий добиться ожидаемой резкости изображений. Так что пришлось прямо на орбите установить на объект систему оптической коррекции, состоящую из двух внешних зеркал.



Для ремонта и модернизации орбитальной обсерватории «Хаббл» было проведено четыре экспедиции к ней, в рамках которой на телескоп устанавливалось новое оборудование –камеры, зеркала, солнечные батареи и другие приборы, позволяющие улучшить работу системы и расширять сферу действий обсерватории.

Будущее

После последней модернизации, произошедшей в 2009 году, было принято решение, что телескоп «Хаббл» будет оставаться на орбите до 2014 года, когда его заменит новая космическая обсерватория – «Джеймс Уэбб». Но сейчас уже известно, что срок эксплуатации объекта будет продолжен, по крайней мере, до 2018, а то и 2020.

Космические телескопы - это, как правило, телескопы, работающие за пределами атмосферы Земли и, тем самым, не утруждающие себя просвечиванием через эту атмосферу. Самым известным космическим телескопом на сегодняшний день является космический телескоп Хаббл, открывший сотни экзопланет, показавший множество живописных галактик, космических событий и расширивший горизонты нашего взгляда в космос. На смену Хабблу придет космический телескоп Джеймса Вебба, который будет запущен в космос в 2018 году и зеркало которого будет превышать диаметр зеркала Хаббла почти в три раза. После Джеймса Вебба ученые планируют отправить в космос Космический телескоп высокого разрешения (HDST), но это пока только в планах. Как бы то ни было, на долю космических телескопов приходится и будет приходиться большая часть наших открытий в глубоком космосе.

Мы представляем себе космос как темное, холодное и тихое место, где нет ничего, кроме бесконечной Вселенной вокруг. Однако насчет тишины космического пространства можно поспорить. По всей Вселенной перемещаются тысячи самых разных радиосигналов. Их испускают различные космические объекты и большая часть таких сигналов — это не более, чем шум и помехи. Но встречаются среди них и те, что к помехам отнести никак не получается. И недавно зарегистрировал огромный китайский радиотелескоп.

Его появление в 2025 году знаменует настоящий прорыв в астрономии. Диаметр зеркала превысит втрое самый большой на сегодня и составит 10 метров.

Российские учёные начали работу над созданием телескопа под названием «Миллиметрон», не имеющего аналогов в мире ни по размеру, ни по мощности. Об этом сообщает «Российская газета ». Его появление станет хорошими новостями для науки и знаменует настоящий прорыв в астрономии. Это будет самый крупный подобный объект в истории. Его точность поражает воображение: в миллиард раз лучше, чем у глаза человека.

В основе работы телескопа будет лежать большое зеркало диаметром 10 метров. Для сравнения, у самого крупного подобного объекта «Гершель» этот показатель втрое меньше. Зеркало будет представлять собой более 20 своего рода лепестков, каждый из которых в свою очередь будет разделён на три дольки. Все эти части будут подвижными для возможности настройки и корректировки телескопа. Зеркальная поверхность будет выполнена с ювелирной точностью: допустимое отклонение составляет всего 10 микрон (0,01 миллиметра). Радиус действия телескопа составит полтора миллиона километров.

Интересно, что при создании подобных аппаратов часто возникают сложные научные задачи, о которых рядовой читатель хороших новостей и не догадывается. Например, важнейшей проблемой для учёных является охлаждение поверхности зеркала до температуры -268°C. Это необходимо поскольку аппарат сильно нагреется от солнца и начнёт сам излучать тепло, которое в свою очередь создаст непреодолимые помехи для приёма сигналов из далёкого космоса. Для охлаждения на «Миллиметроне» будут установлены пять защитных экранов и мощная охлаждающая установка, работающая на солнечной энергии.

Отдельной сложной задачей является доставка такого чуда техники на околоземную орбиту. С Земли телескоп отправится в компактном собранном состоянии, а уже в космическом пространстве раскроются, подобно цветку с многочисленными лепестками.

Что же даст нам, землянам, создание и отправка в космос столь грандиозного научно-исследовательского аппарата? Прежде всего, он позволит изучать пространство Вселенной почти во всех диапазонах волн (рентгеновские лучи, инфракрасные, гравитационные волны, гамма-лучи и другие). При этом он будет работать с максимально возможным на данный момент угловым разрешением . Последние научные данные свидетельствуют, что космос - не пустое пространство. Напротив, он буквально нашпигован различными объектами. Их плотность учёные сравнивают с содержимым банки красной икры. Однако изучить все эти пока непонятные для людей объекты можно лишь обладая современным аппаратом, которого пока в мире нет.

Что будет изучать телескоп «Миллиметрон»

  • Чёрные дыры. В последнее время ряд астрономов заявили, что они не существуют вовсе. «Есть ли они в реальности?» - на этот вопрос ответит «Миллиметрон».
  • Процесс образования звёзд и планет, а параллельно с этим поиск внеземной жизни.
  • Как эволюционируют галактики после Большого Взрыва.
  • Так называемые «тёмную материю» и «невидимую энергию». Их существование предполагают некоторые астрономы, но узнать об этих явлениях подробнее пока не получается.

Запуск телескопа «Миллиметрон» планируется произвести к 2025 году. Сейчас работы по его созданию уже начаты. Напомним, что в данный момент на околоземной орбите расположен другой телескоп, по преимуществу разработанный в России - «Радиоастрон ». Он был запущен в 2011 году и продолжит работать даже после запуска своего собрата. Самым мощным телескопом в мире пока считается американский «Хаббл».

Вдали от суеты и огней цивилизации, в безлюдных пустынях и на вершинах гор стоят величественные титаны, чей взор всегда направлен на звездное небо. Одни стоят уже десятки лет, а другим только предстоит увидеть свои первые звезды. Сегодня мы узнаем, где находятся 10 самых больших телескопов в мире, и познакомимся с каждым из них отдельно.

10. Large Synoptic Survey Telescope (LSST)

Телескоп находится на вершине Серо-Пачон на высоте 2682 м над уровнем моря. По типу он относится к оптическим рефлекторам. Диаметр основного зеркала составляет 8,4 м. Первый свет (термин, означающий первое использование телескопа по прямому назначению) LSST увидит в 2020 году. А полноценно работать аппарат начнет с 2022 года. Несмотря на то что телескоп находится за пределами США, его строительство финансируют американцы. Одним из них стал Бил Гейтс, который вложил 10 млн долларов. В общей сложности проект будет стоить 400 млн.

Главная задача телескопа - фотографировать ночное небо с периодичностью в несколько ночей. Для этого у аппарата имеется камера на 3,2 гигапикселя. LSST имеет большой угол обзора - 3,5 градуса. Луна и Солнце, к примеру, в том виде, в котором их можно созерцать с Земли, занимают только полградуса. Такие широкие возможности обусловлены внушительным диаметром телескопа и его уникальной конструкцией. Дело в том, что здесь вместо двух привычных зеркал используется три. Это не самый большой телескоп в мире, однако он может стать одним из самых продуктивных.

Научные цели проекта: поиск следов темной материи; картографирование Млечного пути; обнаружение взрывов новых и сверхновых; отслеживание небольших объектов Солнечной системы (астероиды и кометы), в частности тех, которые проходят в непосредственной близости с Землей.

9. Большой южноафриканский телескоп (SALT)

Данный аппарат также представляет собой оптический рефлектор. Он находится в Южно-Африканской республике, на вершине холма, в полупустынной местности близ поселения Сутерланд. Высота телескопа составляет 1798 м. Диметр основного зеркала - 11/9,8 м.

Это не самый большой телескоп в мире, но самый крупный в южном полушарии. Строительство аппарата обошлось в 36 млн долларов. Треть из них выделило правительство ЮАР. Остаток суммы был распределен между Германией, Великобританией, Польшей, Америкой и Новой Зеландией.

Первый снимок установки SALT состоялся в 2005 году, практически сразу после окончания строительных работ. Как для оптических телескопов, его конструкция довольно нестандартна. Однако она получила широкое распространение среди новейших представителей крупных телескопов. Основное зеркало состоит из 91 шестиугольного элемента, каждый из которых имеет диаметр в 1 метр. Для достижения определенных целей и улучшения видимости все зеркала могут регулироваться по углу.

SALT создан для спектрометрического и визуального анализа излучения, исходящего от астрономических объектов, находящихся вне поля видимости телескопов, расположенных в северном полушарии. Сотрудники телескопа наблюдают за квазарами, дальними и близкими галактиками, а также отслеживают эволюцию звезд.

Аналогичный телескоп есть и в Америке - Hobby-Eberly Telescope. Он располагается в пригороде Техаса и практически полностью совпадает по конструкции с установкой SALT.

8. Keck I и II

Два телескопа Keck соединены в систему, которая создает единое изображение. Располагаются они на Гавайях на горе Мауна Кеа. составляет 4145 м. По типу телескопы также относятся к оптическим рефлекторам.

Обсерватория Keck располагается в одном из наиболее благоприятных (с точки зрения астроклимата) мест на Земле. Это значит, что вмешательство атмосферы в наблюдения здесь минимально. Поэтому обсерватория Keck стала одной из наиболее эффективных в истории. И это притом, что самый большой телескоп в мире расположен не здесь.

Основные зеркала телескопов Keck полностью идентичны между собой. Они, подобно телескопу SALT, состоят из комплекса подвижных элементов. Здесь их по 36 на каждый из аппаратов. По форме зеркала представляют собой шестиугольник. Обсерватория может наблюдать за небом в оптическом и в инфракрасном диапазоне. Keck проводит широкий спектр основных исследований. Кроме того, он на сегодняшний день считается одним из наиболее эффективных наземных телескопов по поиску экзопланет.

7. Большой Канарский телескоп (GTC)

Мы продолжаем отвечать на вопрос о том, где находится самый большой телескоп в мире. На этот раз любопытство занесло нас в Испанию, на Канарские острова, а точнее на острове Ла Пальма, где находится телескоп GTC. Высота конструкции над уровнем моря составляет 2267 м. Диаметр основного зеркала - 10,4 м. Это также оптический рефлектор. Возведение телескопа завершилось в 2009 году. Открытие посетил Хуан Карлос I - король Испании. Проект обошелся в 130 млн евро. 90 % суммы выделило правительство Испании. Остальные 10 % были поровну поделены между Мексикой и университетом Флориды.

Телескоп может наблюдать за звездным небом в оптическом и в среднем инфракрасном диапазоне. Благодаря инструментам Osiris и CanariCam он может проводить поляриметрические, спектрометрические и коронографические исследования космических объектов.

6. Обсерватория "Аресибо"

В отличие от предыдущих, данная обсерватория является радиорефлектором. Диаметр основного зеркала составляет (внимание!) 304,8 метра. Находится это чудо техники в Пуэрто-Рико на высоте 497 м над уровнем моря. И это еще не самый большой телескоп в мире. Название лидера вы узнаете чуть ниже.

Гигантский телескоп не единожды попадал в объектив кинокамеры. Помните финальную схватку между Джеймсом Бондом и его противником в картине «Золотой Глаз»? Так вот она проходила именно здесь. Телескоп был запечатлен в научно-фантастическом фильме Карла Сагана «Контакт» и многих других кинолентах. Радиотелескоп фигурировал также в видеоиграх. В частности, в карте Rogue Transmission игрушки Battlefield 4. Столкновение между военными происходит вокруг конструкции, полностью имитирующей Arecibo.

Долгое время считалось, что Arecibo - самый большой телескоп в мире. Фото этого гиганта наверняка видел каждый второй житель Земли. Выглядит он довольно необычно: тарелка огромных размеров, помещенная в естественную покрытая алюминием и окруженная густыми джунглями. Над тарелкой подвешен передвижной облучатель, который держится на 18 тросах. Они, в свою очередь, крепятся на трех высоких башнях, установленных по краям тарелки. Благодаря таким габаритам «Аресибо» может ловить широкий диапазон (длина волны - от 3 см до 1 м) электромагнитного излучения.

Радиотелескоп был введен в эксплуатацию еще в 60-х годах. Он фигурировал в огромном количестве исследований, одно из которых удостоилось Нобелевской премии. В конце 90-х обсерватория стала одним из ключевых инструментов проекта поиска инопланетной жизни.

5. Большой массив в пустыне Атакама (ALMA)

Пришло время рассмотреть самый дорогой из действующих наземных телескопов. Он представляет собой радиоинтерферометр, который находится в на высоте в 5058 м над уровнем моря. Интерферометр состоит из 66 радиотелескопов, которые имеют диаметр в 12 или 7 метров. Проект обошелся в 1,4 млрд долларов. Его финансировали Америка, Япония, Канада, Тайвань, Европа и Чили.

ALMA предназначен для исследования миллиметровых и субмиллиметровых волн. Для аппарата такого рода наиболее благоприятным является высокогорный сухой климат. Телескопы доставлялись на место постепенно. Первая радиоантенна была запущена в 2008, а последняя - в 2013 году. Главная научная цель интерферометра - исследование эволюции космоса, в частности рождения и развития звезд.

4. Гигантский Магеланов телескоп (GMT)

Ближе к юго-западу, в той же пустыне, что и ALMA, на высоте 2516 м над уровнем моря строится телескоп GMT диаметром 25,4 м. По типу он относится к оптическим рефлекторам. Это совместный проект Америки и Австралии.

Основное зеркало будет включать в себя один центральный и шесть окружающих его изогнутых сегментов. Кроме рефлектора, телескоп оснащается адаптивной оптикой нового класса, позволяющей добиться минимального уровня искажений атмосферы. Как результат, снимки будут в 10 раз точнее, чем с космического телескопа «Хаббл».

Научные цели GMT: поиск экзопланет; исследование звездной, галактической и планетарной эволюции; изучение черных дыр и многое другое. Работы по возведению телескопа должны завершиться к 2020 году.

Thirty Meter Telescope (TMT). Данный проект по своим параметрам и целям схож с телескопами GMT и Keck. Он будет находиться на гавайской горе Мауна-Кеа, на высоте 4050 м над уровнем моря. Диаметр основного зеркала телескопа составляет 30 метров. В оптическом рефлекторе TMT применено зеркало, разделенное на множество шестиугольных частей. Только по сравнению с Keck габариты аппарата в три раза больше. Строительство телескопа до сих пор не началось из-за проблем с местной администрацией. Дело в том, что гора Мауна-Кеа является священной для коренных гавайцев. Стоимость проекта составляет 1,3 млрд долларов. В инвестировании примут участие главным образом Индия и Китай.

3. 50-метровый сферический телескоп (FAST)

Вот он, самый большой телескоп в мире. 25 сентября 2016 года в Китае была запущена обсерватория (FAST), созданная для исследования космоса и поиска в нем признаков разумной жизни. Диметр устройства составляет целых 500 метров, поэтому оно получило статус «Самый большой в мире телескоп». Китай начал строительство обсерватории в 2011 году. Проект обошелся стране в 180 млн долларов. Местные власти даже пообещали, что переселят порядка 10 тысяч человек, которые проживают в 5-километровой зоне около телескопа, для создания идеальных условий для мониторинга.

Таким образом, «Аресибо» больше не самый большой в мире телескоп. Китай забрал этот титул у Пуэрто-Рико.

2. Square Kilometer Array (SKA)

Если проект данного радиоинтерферометра благополучно завершится, то обсерватория SKA будет в 50 раз превосходить по мощности крупнейшие из существующих радиотелескопов. Своими антеннами она покроет площадь порядка 1 квадратного километра. По структуре проект напоминает телескоп ALMA, однако по габаритам он значительно превосходит чилийскую установку. На сегодняшний день есть два варианта развития событий: строительство 30 телескопов с антеннами в 200 м или возведение 150-ти 90-метровых телескопов. В любом случае по задумке ученых обсерватория будет иметь протяжность в 3000 км.

SKA будет размещаться сразу на территории двух государств - ЮАР и Австралии. Стоимость проекта составляет порядка 2 млрд долларов. Сумма поделена между 10 странами. К 2020 году планируется завершение проекта.

1. Чрезвычайно большой Европейский телескоп (E-ELT)

В 2025 году на полную мощность выйдет оптический телескоп, который превысит размеры TMT на целых 10 метров и разместится в Чили на вершине горы Серро Армазонес, на высоте в 3060 м. Это будет самый большой оптический телескоп в мире.

Его основное практически 40-метровое зеркало будет включать в себя почти 800 подвижных частей, диаметром в полтора метра каждая. Благодаря таким габаритам и современной адаптивной оптике, E-ELT сможет находить планеты, подобные Земле, и изучать состав их атмосферы.

Самый большой зеркальный телескоп в мире займется также изучением процесса формирования планет и другими фундаментальными вопросами. Цена проекта составляет порядка 1 млрд евро.

Самый большой космический телескоп в мире

Космические телескопы не нуждаются в таких габаритах, как земные, так как за счет отсутствия влияния атмосферы они могут показывать великолепные результаты. Поэтому в данном случае правильнее сказать "самый мощный", а не "самый большой" телескоп в мире. "Хаббл" - космический телескоп, прославившийся на весь мир. Его диаметр составляет без малого два с половиной метра. При этом разрешающая способность аппарата в десяток раз больше, чем если бы он находился на Земле.

На смену "Хабблу" в 2018 году придет более мощный Его диаметр составит 6,5 м, а зеркало будет состоять из нескольких частей. Размещаться, по задумке создателей, "Джеймс Вебб" будет в L2, в постоянной тени Земли.

Заключение

Сегодня мы познакомились с десятком наиболее масштабных телескопов в мире. Теперь вы знаете, какими гигантскими и высокотехнологичными могут быть конструкции, обеспечивающие изучение космоса, а также сколько денег тратится на возведение этих телескопов.

Космические обсерватории играют большую роль в развитии астрономии. Величайшие научные достижения последних десятилетий в опираются на знания, полученные при помощи космических аппаратов.

Большой объём информации о небесных телах не доходит до земли т.к. ей мешает атмосфера которой мы дышим. Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучи космического происхождения недоступны для наблюдений с поверхности нашей планеты. Для изучения космоса в этих диапазонах необходимо вывести телескоп за пределы атмосферы. Результаты исследований полученные с помощью космических обсерваторий перевернули представление человека о вселенной.

Первые космические обсерватории существовали на орбите недолго, но развитие технологий позволило создать новые инструменты для исследования вселенной. Современный космический телескоп - уникальный комплекс который разрабатывается и эксплуатируется совместно учеными многих стран в течении нескольких десятков лет. Наблюдения полученные с помощью многих космических телескопов доступны для бесплатного использования учёными и просто любителями астрономии со всего мира.

Инфракрасные телескопы

Предназначены для проведения космических наблюдений в инфракрасном диапазоне спектра. Недостатком этих обсерваторий является их большой вес. На орбиту помимо телескопа приходится выводить охладитель, который должен уберечь ИК-приёмник телескопа от фонового излучения - инфракрасных квантов, испускаемых самим телескопом. Это привело к тому, что за всю историю космических полётов на орбите работало очень мало инфракрасных телескопов.

Хаббловский космический телескоп

Изображение ESO

24 апреля 1990 г. с помощью американского шаттла "Дискавери" STS-31 была выведена на орбиту крупнейшая околоземная обсерватория - космический телескоп "Хаббл" весом более 12т. Этот телескоп результат совместного проекта НАСА и Европейского космического агентства. Работа космического телескопа "Хаббл" рассчитана на длительный срок. полученные с его помощью данные доступны на сайте телескопа для бесплатного пользования астрономами всего мира.

Ультрафиолетовые телескопы

Озоновый слой окружающий нашу атмосферу практически полностью поглощает ультрафиолетовое излучение Солнца и звёзд, поэтому УФ-кванты можно регистрировать только за его пределами. Интерес астрономов к УФ-излучению обусловлен тем, что в этом диапазоне спектра излучает самая распространённая молекула во Вселенной - молекула водорода. Первый ультрафиолетовый телескоп-рефлектор с диаметром зеркала 80 см был выведен на орбиту в августе 1972 г. на совместном американо-европейском спутнике "Коперник".

Рентгеновские телескопы

Рентгеновские лучи доносят до нас из космоса информацию о мощных процессах связанных с рождением звёзд. Высокая энергия рентгеновских и гамма-квантов позволяет регистрировать их по одиночке, с точным указанием времени регистрации. Благодаря тому, что детекторы рентгеновского излучения относительно легки в изготовлении и имеют небольшой вес, рентгеновские телескопы устанавливались на многих орбитальных станциях и даже межпланетных космических кораблях. Всего в космосе побывало более сотни таких инструментов.

Гамма-телескопы

Гамма-излучение имеет близкую природу к рентгеновскому излечению. Для регистрации гамма-лучей используются методы схожие с методами применяемыми для исследований рентгеновского излучения. Поэтому зачастую на космических телескопах исследуют одновременно как рентгеновские, так и гамма-лучи. Гамма-излучение принимаемое этими телескопами доносит до нас информацию о процессах, происходящих внутри атомных ядер, а также о превращениях элементарных частиц в космосе.

Электромагнитный спектр, исследуемый в астрофизике

Длинны волн Область спектра Прохождение сквозь земную атмосферу Приемники излучения Методы исследования
<=0,01 нм Гамма-излучение Сильное поглощение
0,01-10 нм Рентгеновское излучение Сильное поглощение
O, N2, O2, O3 и другими молекулами воздуха
Счетчики фотонов, ионизационные камеры, фотоэмульсии, люминофоры В основном внеатмосферные (космические ракеты, искусственные спутники)
10-310 нм Далекий ультрафиолет Сильное поглощение
O, N2, O2, O3 и другими молекулами воздуха
Внеатмосферные
310-390 нм Близкий ультрафиолет Слабое поглощение Фотоэлектронные умножители, фотоэмульсии С поверхности Земли
390-760 нм Видимое излучение Слабое поглощение Глаз, фотоэмульсии, фотокатоды, полупроводниковые приборы С поверхности Земли
0,76-15 мкм Инфракрасное излучение Частые полосы поглощения H2O, CO2, и др. Частично с поверхности Земли
15 мкм - 1 мм Инфракрасное излучение Сильное молекулярное поглощение Болометры, термопары, фотосопротивления, специальные фотокатоды и фотоэмульсии С аэростатов
> 1 мм Радиоволны Пропускается излучение с длинной волны около 1 мм, 4,5 мм, 8 мм и от 1 см до 20 м Радиотелескопы С поверхности Земли

Космические обсерватории

Агентство, страна Название обсерватории Область спектра Год запуска
CNES & ESA, Франция, Европейский Союз COROT Видимое излучение 2006
CSA, Канада MOST Видимое излучение 2003
ESA & NASA, Европейский Союз, США Herschel Space Observatory Инфракрасное 2009
ESA, Европейский Союз Darwin Mission Инфракрасное 2015
ESA, Европейский Союз Gaia mission Видимое излучение 2011
ESA, Европейский Союз International Gamma Ray
Astrophysics Laboratory (INTEGRAL)
Гамма-излучение, Рентген 2002
ESA, Европейский Союз Planck satellite Микроволновое 2009
ESA, Европейский Союз XMM-Newton Рентген 1999
IKI & NASA, Россия, США Spectrum-X-Gamma Рентген 2010
IKI, Россия RadioAstron Радио 2008
INTA, Испания Low Energy Gamma Ray Imager (LEGRI) Гамма-излучение 1997
ISA, INFN, RSA, DLR & SNSB Payload for Antimatter Matter
Exploration and Light-nuclei Astrophysics (PAMELA)
Particle detection 2006
ISA, Израиль AGILE Рентген 2007
ISA, Израиль Astrorivelatore Gamma ad
Immagini LEggero (AGILE)
Гамма-излучение 2007
ISA, Израиль Tel Aviv University Ultraviolet
Explorer (TAUVEX)
Ультрафиолет 2009
ISRO, Индия Astrosat Рентген, Ультрафиолет, Видимое излучение 2009
JAXA & NASA, Япония, США Suzaku (ASTRO-E2) Рентген 2005
KARI, Корея Korea Advanced Institute of
Science and Technology Satellite 4 (Kaistsat 4)
Ультрафиолет 2003
NASA & DOE, США Dark Energy Space Telescope Видимое излучение
NASA, США Astromag Free-Flyer Элементарные частицы 2005
NASA, США Chandra X-ray Observatory Рентген 1999
NASA, США Constellation-X Observatory Рентген
NASA, США Cosmic Hot Interstellar
Spectrometer (CHIPS)
Ультрафиолет 2003
NASA, США Dark Universe Observatory Рентген
NASA, США Fermi Gamma-ray Space Telescope Гамма-излучение 2008
NASA, США Galaxy Evolution Explorer (GALEX) Ультрафиолет 2003
NASA, США High Energy Transient Explorer 2
(HETE 2)
Гамма-излучение, Рентген 2000
NASA, США Hubble Space Telescope Ультрафиолет, Видимое излучение 1990
NASA, США James Webb Space Telescope Инфракрасное 2013
NASA, США Kepler Mission Видимое излучение 2009
NASA, США Laser Interferometer Space
Antenna (LISA)
Гравитационное 2018
NASA, США Nuclear Spectroscopic Telescope
Array (NuSTAR)
Рентген 2010
NASA, США Rossi X-ray Timing Explorer Рентген 1995
NASA, США SIM Lite Astrometric Observatory Видимое излучение 2015
NASA, США Spitzer Space Telescope Инфракрасное 2003
NASA, США Submillimeter Wave Astronomy
Satellite (SWAS)
Инфракрасное 1998
NASA, США Swift Gamma Ray Burst Explorer Гамма-излучение, Рентген, Ультрафиолет,
Видимое излучение
2004
NASA, США Terrestrial Planet Finder Видимое излучение, Инфракрасное
NASA, США Wide-field Infrared Explorer
(WIRE)
Инфракрасное 1999
NASA, США Wide-field Infrared Survey
Explorer (WISE)
Инфракрасное 2009
NASA, США WMAP Микроволновое 2001