Квантовая физика начало изучения. Квантовая физика: что на самом деле реально? Фундаментальные открытия в области квантовой физики

Классическая физика, существовавшая до изобретения квантовой механики, описывает природу в обычном (макроскопическом) масштабе. Большинство теорий в классической физике можно вывести, как приближение, действующее в привычных для нас масштабах. Квантовая физика (она же и квантовая механика) отличается от классической науки тем, что энергия, импульс, угловой момент и другие величины связанной системы ограничены дискретными значениями (квантованием). Объекты имеют особые характеристики как в виде частиц, так и в виде волн (дуальность волновых частиц). Также в этой науке есть пределы точности, с которой можно измерить величины (принцип неопределенности).

Можно сказать, что после возникновения квантовой физики в точных науках произошла своеобразная революция, позволившая заново пересмотреть и проанализировать все старые законы, которые ранее считались непреложными истинами. Хорошо это или плохо? Пожалуй, хорошо, ведь подлинная наука никогда не должна стоять на месте.

Однако "квантовая революция" стала своеобразным ударом для физиков старой школы, которым пришлось смириться с тем, что то, во что они верили раньше, оказалось лишь набором ошибочных и архаичных теорий, нуждающихся в срочном пересмотре и адаптации к новой реальности. Большинство физиков с восторгом приняли эти новые представления о хорошо знакомой науке, внеся свою лепту в ее изучение, развитие и воплощение в жизнь. Сегодня квантовая физика задает динамику всей науке, в целом. Передовые экспериментальные проекты (вроде Большого адронного коллайдера) возникли именно благодаря ней.

Открытие

Что можно сказать об основах квантовой физики? Она постепенно возникала из различных теорий, призванных объяснить явления, которые не могли быть согласованы с классической физикой, например, решение Макса Планка в 1900 году и его подход к проблеме излучения многих научных проблем, а также соответствие между энергией и частотой в статье 1905 Альберта Эйнштейна, в которой объяснялись фотоэлектрические эффекты. Ранняя теория квантовой физики была основательно переработана в середине 1920-х годов Вернером Гейзенбергом, Максом Борном и другими. Современная теория сформулирована в различных специально разработанных математических концепциях. В одной из них арифметическая функция (или волновая функция) дает нам исчерпывающую информацию об амплитуде вероятности расположения импульса.

Научное исследование волновой сущности света началось более 200 лет назад, когда великие и признанные ученые того времени предложили, разработали и доказали теорию света на основе своих собственных экспериментальных наблюдений. Они назвали ее волновой.

В 1803 году известный английский ученый Томас Янг провел свой знаменитый двойной эксперимент, в результате которого написал прославленную работу «О природе света и цвета», сыгравшую огромную роль в формировании современных представлений об этих знакомых нам всем явлениях. Этот эксперимент сыграл важнейшую роль в общем признании этой теории.

Подобные опыты часто описываются в различных книгах, например, "Основы квантовой физики для чайников". Современные эксперименты с разгоном элементарных частиц, например, поиск бозона Хиггса в Большом адронном коллайдере (сокращенно БАК) проводится как раз для того, чтобы найти практическое подтверждение многих сугубо теоретических квантовых теорий.

История

В 1838 году Майкл Фарадей на радость всему миру открыл катодные лучи. Вслед за этими нашумевшими исследованиями последовало заявление о проблеме излучения, так называемого, "черного тела" (1859 год), сделанное Густавом Кирхгофом, а также знаменитое предположение Людвига Больцмана о том, что энергетические состояния любой физической системы могут быть еще и дискретными (1877 год). Уже потом появилась квантовая гипотеза, разработанная Максом Планком (1900 год). Она считается одной из основ квантовой физики. Смелая о том, что энергия может как излучаться, так и поглощаться в дискретных «квантах» (или энергетических пакетах), в точности соответствует наблюдаемым закономерностям излучения черного тела.

Большой вклад в квантовую физику внес известный всему миру Альберт Эйнштейн. Находясь под впечатлением от квантовых теорий, он разработал свою. Общую теорию относительности - так она называется. Открытия в квантовой физике повлияли и на разработку специальной теории относительности. Многие ученые в первой половине прошлого века начали заниматься этой наукой с подачи Эйнштейна. Она в то время была передовой, всем нравилась, все ею интересовались. Не удивительно, ведь она закрывала столько "дыр" в классической физической науке (правда, новые тоже создавала), предлагала научное обоснование путешествий во времени, телекинеза, телепатии и параллельных миров.

Роль наблюдателя

Любое событие или состояние зависит непосредственно от наблюдателя. Обычно именно так основы квантовой физики кратко объясняются людям, далеким от точных наук. Однако в реальности все гораздо сложнее.

Это прекрасно согласуется со многими оккультными и религиозными традициями, которые испокон веков настаивали на возможности людей влиять на окружающие события. В некотором роде это еще и почва для научного объяснения экстрасенсорики, ведь теперь утверждение о том, что человек (наблюдатель) способен влиять силой мысли на физические события, не кажется абсурдной.

Каждое собственное состояние наблюдаемого события или объекта соответствует собственному вектору наблюдателя. Если спектр оператора (наблюдателя) дискретный, наблюдаемый объект может достигать только дискретных собственных значений. То есть объект наблюдения, равно как и его характеристики, полностью определяется этим самым оператором.

В отличие от общепринятой классической механики (или физики), здесь нельзя делать одновременные предсказания сопряженных переменных, таких как положение и импульс. Например, электроны могут (с определенной вероятностью) располагаться приблизительно в некой области пространства, но их математически точное положение на самом деле неизвестно.

Контуры постоянной плотности вероятности, часто называемые «облаками», могут быть проведены вокруг ядра атома, чтобы концептуализировать, где электрон может быть расположен с наибольшей вероятностью. Принцип неопределенности Гейзенберга доказывает неспособность точно выявить местонахождение частицы с учетом ее сопряженного импульса. Некоторые модели в этой теории имеют сугубо абстрактный вычислительный характер и не предполагают прикладного значения. Впрочем, часто их используют для вычисления сложных взаимодействий на уровне и прочих тонких материй. Кроме того, этот раздел физики позволил ученым предположить возможность реального существования множества миров. Возможно, в скором времени мы сможем их увидеть.

Волновые функции

Законы квантовой физики весьма объемные и разнообразные. Они пересекаются с представлением о волновых функциях. Некоторые особые создают разброс вероятностей, который по своей сути является постоянным или независимым от времени, к примеру, когда в стационарном положении энергии время как бы исчезает по отношению к волновой функции. Это один из эффектов квантовой физики, который является для нее основополагающим. Любопытный факт заключается в том, что феномен времени был кардинально пересмотрен в этой необычной науке.

Теория возмущений

Однако существует несколько надежных способов разработки решений, необходимых для работы с формулами и теориями в квантовой физике. В одном из таких методов, широко известном как "теория возмущений", используется аналитический результат для элементарной квантово-механической модели. Она была создана, чтобы добиться результатов от экспериментов для разработки еще более сложной модели, которая связана с более простой моделью. Вот такая рекурсия получается.

Этот подход особенно важен в теории квантового хаоса, которая чрезвычайно популярна для трактовки различных событий в микроскопической реальности.

Правила и законы

Правила квантовой механики фундаментальны. Они утверждают, что пространство развертывания системы является абсолютно фундаментальным (оно имеет скалярное произведение). Еще одно утверждение заключается в том, что наблюдаемые этой системой эффекты являются в то же время и своеобразными операторами, влияющими на векторы в этой самой среде. При этом они не говорят нам, какое гильбертово пространство или какие операторы существуют в данный момент. Их можно подобрать соответствующим образом, чтобы получить количественное описание квантовой системы.

Значение и влияние

С самого момента возникновения этой необычной науки многие антиинтуитивные аспекты и результаты изучения квантовой механики спровоцировали громкие философские дебаты и многие интерпретации. Даже фундаментальные вопросы, такие как правила на тему вычисления различных амплитуд и распределения вероятностей, заслуживают уважения со стороны общества и многих ведущих ученых.

Например, однажды с грустью заметил, что он совершенно не уверен в том, что кто-то из ученых вообще понимает квантовую механику. Согласно Стивену Вайнбергу, на данный момент нет той интерпретации квантовой механики, которая бы всех устраивала. Это говорит о том, что ученые создали "монстра", полностью понять и объяснить существование которого они сами не в силах. Однако это никак не вредит актуальности и популярности данной науки, а привлекает к ней молодых специалистов, желающих решать действительно сложные и непонятные задачи.

Кроме того, квантовая механика заставила полностью пересмотреть объективные физические законы Вселенной, что не может не радовать.

Копенгагенская интерпретация

Согласно этой интерпретации, стандартное определение причинности, известное нам из классической физики, больше не нужно. Согласно квантовым теориям, причинности в привычном для нас понимании не существует вообще. Все физические явления в них объясняются с точки зрения взаимодействия мельчайших элементарных частиц на субатомном уровне. Эта область, несмотря на кажущуюся невероятность, чрезвычайно перспективна.

Квантовая психология

Что можно сказать о взаимосвязи квантовой физики и сознания человека? Об этом прекрасно написано в книге, написанной Робертом Антоном Уилсоном в 1990 году, которая называется "Квантовая психология".

Согласно теории, изложенной в книге, все процессы, происходящие в нашем мозге, обусловлены законами, описанными в этой статье. То есть это своеобразная попытка адаптировать теорию квантовой физики под психологию. Эта теория считается паранаучной и не признается академическим сообществом.

Книга Уилсона примечательна тем, что он приводит в ней набор различных техник и практик, в той или иной степени доказывающих его гипотезу. Так или иначе, но читатель должен самостоятельно решить, верит он или нет состоятельность подобных попыток применить математические и физические модели к гуманитарным наукам.

Некоторые восприняли книгу Уилсона как попытку оправдать мистическое мышление и привязать его к научно доказанным новомодным физическим формулировкам. Этот весьма нетривиальный и яркий труд остается востребованным уже более 100 лет. Книгу издают, переводят и читают во всем мире. Кто знает, возможно, с развитием квантовой механики изменится и отношение научного сообщества к квантовой психологии.

Заключение

Благодаря этой замечательной теории, которая вскоре стала отдельной наукой, мы получили возможность исследовать окружающую реальность на уровне субатомных частиц. Это мельчайший уровень из всех возможных, совершенно недоступный нашему восприятию. Что физики раньше знали о нашем мире, нуждается в срочном пересмотре. С этим согласны абсолютно все. Стало очевидно, что разные частицы могут взаимодействовать друг с другом на совершенно немыслимых расстояниях, которые мы можем измерять лишь путем сложных математических формул.

Кроме того, квантовая механика (и квантовая физика) доказала возможность существования множества параллельных реальностей, путешествий во времени и прочих вещей, которые на протяжении всей истории считались лишь уделом научной фантастики. Это, несомненно, огромный вклад не только в науку, но и в будущее человечества.

Для любителей научной картины мира эта наука может быть как другом, так и врагом. Дело в том, что квантовая теория открывает широкие возможности для различных спекуляций на паранаучную тему, как это уже было показано на примере одной из альтернативных психологических теорий. Некоторые современные оккультисты, эзотерики и сторонники альтернативных религиозно-духовных течений (чаще всего - психокультов) обращаются к теоретическим построениям этой науки для того, чтобы обосновать рациональность и истинность своих мистических теорий, верований и практик.

Это беспрецедентный случай, когда простые домысли теоретиков и абстрактные математические формулы привели к самой настоящей научной революции и создали новую науку, перечеркнувшую все, что было известно ранее. В некоторой степени квантовая физика опровергла законы аристотелевской логики, поскольку показала, что при выборе "или-или" есть еще один (а, возможно, несколько) альтернативный вариант.

Думаю, можно сказать, что никто не понимает квантовую механику

Физик Ричард Фейнман

Высказывание о том, что изобретение полупроводниковых приборов было революцией, не будет преувеличением. Это не только впечатляющее технологическое достижение, но оно также проложило путь для событий, которые навсегда изменяют современное общество. Полупроводниковые приборы применяются во всевозможных устройствах микроэлектроники, в том числе и в компьютерах, отдельных видах медицинского диагностического и лечебного оборудования, популярных телекоммуникационных устройствах.

Но за этой технологической революцией стоит даже больше, революция в общей науке: область квантовой теории . Без этого прыжка в понимании естественного мира, развитие полупроводниковых приборов (и более продвинутых разрабатываемых электронных устройств) никогда бы не удалось. Квантовая физика - это невероятно сложный раздел науки. В данной главе дается лишь краткий обзор. Когда ученые уровня Фейнмана говорят, что «никто не понимает [это]», вы можете быть уверены, что это действительно сложная тема. Без базового понимания квантовой физики или, по крайней мере, понимания научных открытий, которые привели к их разработке, невозможно понять, как и почему работают полупроводниковые электронные приборы. Большинство учебников по электронике пытаются объяснить полупроводники с точки зрения «классической физики», в результате делая их еще более запутанными для понимания.

Многие из нас видели диаграммы моделей атомов, которые похожи на рисунок ниже.

Атом Резерфорда: отрицательные электроны вращаются вокруг небольшого положительного ядра

Крошечные частицы материи, называемые протонами и нейтронами , составляют центр атома; электроны вращаются как планеты вокруг звезды. Ядро несет положительный электрический заряд, благодаря наличию протонов (нейтроны не имеют никакого электрического заряда), в то время как уравновешивающий отрицательный заряд атома находится в движущихся по орбите электронах. Отрицательные электроны притягиваются к положительным протонам, как планеты притягиваются силой притяжения к Солнцу, однако орбиты стабильны, благодаря движению электронов. Мы обязаны этой популярной моделью атома работе Эрнеста Резерфорда, который примерно в 1911 году экспериментально определил, что положительные заряды атомов сосредоточены в крошечном, плотном ядре, а не равномерно распределены по диаметру, как ранее предполагал исследователь Дж. Дж. Томсон.

Эксперимент Резерфорда по рассеянию заключается в бомбардировке тонкой золотой фольги положительно заряженными альфа-частицами, как показано на рисунке ниже. Молодые аспиранты Х. Гейгер и Э. Марсден получили неожиданные результаты. Траектория движения некоторых альфа-частиц была отклонена на большой угол. Некоторые альфа-частицы были рассеяны в обратном направлении, под углом почти на 180°. Большинство частиц прошло через золотую фольгу, не изменив траекторию пути, будто фольги и не было совсем. Факт того, что несколько альфа-частиц испытывали большие отклонения в траектории движения, указывает на присутствие ядер с небольшим положительным зарядом.

Рассеяние Резерфорда: пучок альфа-частиц рассеивается тонкой золотой фольгой

Хотя модель атома Резерфорда подтверждалась экспериментальными данными лучше, чем модель Томсона, она всё еще была неидеальна. Были предприняты дальнейшие попытки определения структуры атома, и эти усилия помогли проложить путь для странных открытий квантовой физики. Сегодня наше понимание атома немного сложнее. Тем не менее, несмотря на революцию квантовой физики и ее вклад в наше понимание строения атома, изображение солнечной системы Резерфорда в качестве структуры атом, прижилось в массовом сознании до такоей степени, что оно сохраняется в областях образования, даже если оно неуместно.

Рассмотрим это краткое описание электронов в атоме, взятое из популярного учебника по электронике:

Вращающиеся отрицательные электроны притягиваются к положительному ядру, которое приводит нас к вопросу о том, почему электроны не летят в ядро атом. Ответ в том, что вращающиеся электроны остаются на своей стабильной орбите из-за двух равных, но противоположных сил. Центробежная сила, действующая на электроны, направлена наружу, а сила притяжения зарядов пытается притянуть электроны к ядру.

В соответствии с моделью Резерфорда, автор считает электроны твердыми кусками материи, занимающими круглые орбиты, их притяжение внутрь к противоположно заряженному ядру уравновешивается их движением. Использование термина «центробежная сила» технически неверно (даже для вращающихся на орбитах планет), но это легко простить из-за популярного принятия модели: на самом деле, не существует такого понятия, как сила, отталкивающая любое вращающееся тело от центра его орбиты. Кажется, что это так потому, что инерция тела стремиться сохранить его движение по прямой линии, а так как орбита является постоянным отклонением (ускорением) от прямолинейного движения, есть постоянное инерционное противодействие к любой силе, притягивающей тело к центру орбиты (центростремительной), будь то гравитация, электростатическое притяжения, или даже натяжение механической связи.

Тем не менее, реальная проблема с этим объяснением, в первую очередь, заключается в идее электронов, движущихся по круговым орбитам. Проверенный факт, что ускоренные электрические заряды испускают электромагнитное излучение, этот факт был известен даже во времена Резерфорда. Так как вращательное движение является формой ускорения (вращающийся объект в постоянном ускорении, уводящем объект от нормального прямолинейного движения), электроны во вращающемся состоянии должны выбрасывать излучение, как грязь от буксующего колеса. Электроны, ускоренные по круговым траекториям, в ускорителях частиц, называемых синхротронами , как известно, делают это, и результат называется синхротронное излучение . Если бы электроны теряли энергию таким способом, их орбиты, в конечном счете, нарушились бы, и в результате они столкнулись бы с положительно заряженным ядром. Тем не менее, внутри атомов этого обычно не происходит. Действительно, электронные «орбиты» удивительно устойчивы в широком диапазоне условий.

Кроме того, эксперименты с «возбужденными» атомами показали, что электромагнитная энергия излучается атомом только на определенных частотах. Атомы «возбуждаются» внешними воздействиями, такими как свет, как известно, чтобы поглотить энергию и вернуть электромагнитные волны на определенных частотах, как камертон, который не звонит на определенной частоте, пока его не ударят. Когда свет, излучаемый возбужденным атомом, делится призмой на составные частоты (цвета), обнаруживаются отдельные линии цветов в спектре, картина спектральных линий является уникальной для химического элемента. Это явление обычно используется для идентификации химических элементов, и даже для измерения пропорций каждого элемента в соединении или химической смеси. Согласно солнечной системе атомной модели Резерфорда (относительно электронов, как кусков материи, свободно вращающихся на орбите с каким-то радиусом) и законам классической физики, возбужденные атомы должны вернуть энергию в практически бесконечном диапазоне частот, а не на избранных частотах. Другими словами, если модель Резерфорда была правильной, то не было бы эффекта «камертона», и цветовой спектр, излучаемый любым атомом, выглядел бы как непрерывная полоса цветов, а не как несколько отдельных линий.


Боровская модель атома водорода (с орбитами, нарисованными в масштабе) предполагает нахождение электронов только на дискретных орбитах. Электроны, переходящие с n=3,4,5 или 6 на n=2, отображаются на серии спектральных линий Бальмера

Исследователь по имени Нильс Бор попытался улучшить модель Резерфорда, после ее изучения в лаборатории Резерфорда в течение нескольких месяцев в 1912 году. Пытаясь согласовать результаты других физиков (в частности, Макса Планка и Альберта Эйнштейна), Бор предположил, что каждый электрон обладал определенным, конкретным количеством энергии, и что их орбиты распределяются таким образом, что каждый из них может занимать определенные места вокруг ядра, как шарики, зафиксированные на круговых дорожках вокруг ядра, а не как свободно двигающиеся спутники, как предполагалось ранее (рисунок выше). В знак уважения к законам электромагнетизма и ускоряющих зарядов Бор ссылался на «орбиты», как на стационарные состояния , чтобы избежать трактования, что они были подвижны.

Хотя амбициозная попытка Бора переосмысления строения атома, которое ближе согласовывалось с экспериментальными данными, и была важной вехой в физике, но не была завершена. Его математический анализ лучше предсказывал результаты экспериментов по сравнению с анализами, производимых согласно предыдущим моделям, но еще оставались без ответов вопросы о том, почему электроны должны вести себя таким странным образом. Утверждение, что электроны существовали в стационарных квантовых состояниях вокруг ядра, соотносилось с экспериментальными данными лучше, чем модель Резерфорда, но не говорило, что заставляет электроны принимать эти особые состояния. Ответ на этот вопрос должен был прийти от другого физика Луи де Бройля спустя примерно десять лет.

Де Бройль предположил, что электроны, как фотоны (частицы света), обладают и свойствами частиц, и свойствами волн. Опираясь на это предположение, он предположил, что анализ вращающихся электронов с точки зрения волн подходит лучше, чем с точки зрения частиц, и может дать больше понимания об их квантовой природе. И действительно, в понимании был совершен еще один прорыв.


Струна, вибрирующая на резонансной частоте между двумя фиксированными точками, образует стоячую волну

Атом, согласно де Бройлю, состоял из стоячих волн, явление, хорошо известное физикам в различных формах. Как дернутая струна музыкального инструмента (рисунок выше), вибрирующая на резонансной частоте, с «узлами» и «антиузлами» в стабильных местах вдоль своей длины. Де Бройль представил электроны вокруг атомов в виде волн, изогнутых в круг (рисунок ниже).


«Вращающийся» электроны, как стоячая волна вокруг ядра, (a) два цикла в орбите, (b) три цикла в орбите

Электроны могут существовать только на определенных, конкретных «орбитах» вокруг ядра, потому что они являются единственными расстояниями, на которых концы волны совпадают. При любом другом радиусе волна будет разрушительно сталкиваться сама с собой и, таким образом, перестанет существовать.

Гипотеза де Бройля дала как математическое обеспечение, так и удобную физическую аналогию для объяснения квантовых состояний электронов внутри атома, но его модель атома была всё еще неполной. В течение нескольких лет физики Вернер Гейзенберг и Эрвин Шредингер, работая независимо друг от друга, трудились над концепцией корпускулярно-волнового дуализма де Бройля, чтобы создать более строгие математические модели субатомных частиц.

Этому теоретическому продвижению от примитивной модели стоячей волны де Бройля к моделям матрицы Гейзенберга и дифференциального уравнения Шредингера было дано название квантовая механика, она ввела довольно шокирующую характеристику в мир субатомных частиц: признак вероятности, или неопределенности. По новой квантовой теории, было невозможно определить точное положение и точный импульс частицы в один момент. Популярное объяснение этого «принципа неопределенности» заключалось в том, что существовала погрешность измерения (то есть, пытаясь точно измерить положение электрона, вы мешаете его импульсу, и, следовательно, не можете знать, что было до начала измерения положения, и наоборот). Сенсационный вывод квантовой механики заключается в том, что частицы не имеют точных положений и импульсов, и из-за связи этих двух величин их совокупная неопределенность никогда не уменьшится ниже определенного минимального значения.

Эта форма связи «неопределенности» существует и в других областях, кроме квантовой механики. Как обсуждалось в главе «Сигналы переменного тока смешанной частоты» тома 2 этой серии книг, есть взаимоисключающие связи между уверенностью в данных временной области формы сигнала и его данными в частотной области. Проще говоря, чем больше мы знаем его составляющие частоты, тем менее точно мы знаем его амплитуду во времени, и наоборот. Цитирую себя:

Сигнал бесконечной длительности (бесконечное количество циклов) может быть проанализирован с абсолютной точностью, но чем меньше циклов доступно компьютеру для анализа, тем меньше точность анализа... Чем меньше периодов сигнала, тем меньше точность его частоты. Принимая эту концепцию до ее логической крайности, короткий импульс (даже не полный период сигнала) на самом деле не имеет определенной частоты, представляет собой бесконечный диапазон частот. Данный принцип является общим для всех волновых явлений, а не только для переменных напряжений и токов.

Чтобы точно определить амплитуду изменяющегося сигнала, мы должны измерить его в очень короткий промежуток времени. Однако выполнение этого ограничивает наши знания о частоте волны (волна в квантовой механике не должна быть подобно синусоидальной волне; такое подобие является частным случаем). С другой стороны, чтобы определить частоту волны с большой точностью, мы должны измерять его в течение большого количества периодов, а значит, мы потеряем из виду его амплитуду в любой заданный момент. Таким образом, мы не можем одновременно знать мгновенную амплитуду и все частоты любой волны с неограниченной точностью. Еще одна странность, эта неопределенность гораздо больше неточности наблюдателя; она находится в самой природе волны. Это не так, хотя можно бы, учитывая соответствующие технологии, обеспечить точные измерения и мгновенной амплитуды, и частоты одновременно. В буквальном смысле, волна не может точную мгновенную амплитуду и точную частоту одновременно.

Минимальная неопределенность положения частицы и импульса, выраженная Гейзенбергом и Шредингером, не имеет ничего общего с ограничением в измерении; скорее это внутреннее свойство природы корпускулярно-волнового дуализма частицы. Следовательно, электроны на самом деле не существуют в своих «орбитах» как точно определенные частицы материи или даже как точно определенные формы волн, а скорее как «облака» - технический термин волновой функции распределения вероятности, как если бы каждый электрон был «рассеян» или «размазан» в диапазоне положений и импульсов.

Этот радикальный взгляд на электроны, как на неопределенные облака поначалу противоречит изначальному принципу квантовых состояний электронов: электроны существуют в дискретных, определенных «орбитах» вокруг ядра атома. Этот новый взгляд, в конце концов, был открытием, которое привело к образованию и объяснению квантовой теории. Как странно кажется, что теория, созданная для объяснения дискретного поведения электронов, заканчивается, объявив, что электроны существуют как «облака», а не как отдельные кусочки материи. Тем не менее, квантовое поведение электронов зависит не от электронов, имеющих определенные значения координат и импульса, а от других свойств, называемых квантовыми числами . В сущности, квантовая механика обходится без распространенных понятий абсолютного положения и абсолютного момента, а заменяет их абсолютными понятиями таких типов, у которых нет аналогов в общей практике.

Даже если электроны, как известно, существуют в бесплотных, «облачных» формах распределенной вероятности, а не в виде отдельных частей материи, эти «облака» имеют несколько другие характеристики. Любой электрон в атоме может быть описан четырьмя числовыми мерами (упомянутыми ранее квантовыми числами), которые называются главное (радиальное) , орбитальное (азимутальное) , магнитное и спиновое числа. Ниже представлен краткий обзор значения каждого из этих чисел:

Главное (радиальное) квантовое число : обозначается буквой n , это число описывает оболочку, на которой пребывает электрон. Электронная «оболочка» представляет собой область пространства вокруг ядра атома, на которой электроны могут существовать, соответствуя моделям стабильной «стоячей волны» де Бройля и Бора. Электроны могут «прыгать» с оболочки на оболочку, но не могут существовать между ними.

Главное квантовое число должно быть положительным целым числом (большим или равным 1). Другими словами, главное квантовое число электрона не может быть 1/2 или -3. Эти целые числа были выбраны не произвольно, а через экспериментальные доказательства светового спектра: разные частоты (цвета) света, излучаемые возбужденными атомами водорода, следуют математической зависимости, зависящей от конкретных целых значений, как показано на рисунке ниже.

Каждая оболочка обладает способностью удерживать несколько электронов. В качестве аналогии для электронных оболочек можно привести концентрические ряды сидений в амфитеатре. Так же, как человек, сидящий в амфитеатре, должен выбрать ряд, чтобы сесть (он не может сесть между рядов), электроны должны «выбрать» конкретную оболочку, чтобы «сесть». Как и ряды в амфитеатре, крайние оболочки удерживают больше электронов по сравнению с оболочками ближе к центру. Также электроны стремятся найти наименьшую доступную оболочку, как люди в амфитеатре ищут место, ближайшее к центральной сцене. Чем выше номер оболочки, тем больше энергии у электронов на ней.

Максимальное количество электронов, которое какая-либо оболочка может удерживать, описывается уравнение 2n 2 , где n - главное квантовое число. Таким образом, первая оболочка (n = 1) может содержать 2 электрона; вторая оболочка (n = 2) - 8 электронов; и третья оболочка (n = 3) - 18 электронов (рисунок ниже).


Главное квантовое число n и максимальное количество электронов связаны формулой 2(n 2). Орбиты не в масштабе.

Электронные оболочки в атоме были обозначаются буквами, а не цифрами. Первая оболочка (n = 1) была обозначена K, вторая оболочка (n = 2) L, третья оболочка (n = 3) M, четвертая оболочка (n = 4) N, пятая оболочка (n = 5) O, шестая оболочка (n = 6) P, и седьмая оболочка (n = 7) B.

Орбитальное (азимутальное) квантовое число : оболочка, состоящая из подоболочек. Кому-то может быть удобнее думать о подоболочках как о простых секциях оболочек, как полосы делящие дорогу. Подоболочки гораздо более странны. Подоболочки - это области пространства, где могут существовать электронные «облака», и на самом деле различные подоболочки имеют различные формы. Первая подоболочка в форме шара (рисунок ниже (s)), который имеет смысл, когда визуализируется в виде электронного облака, окружающего ядро атома в трех измерениях.

Вторая подоболочка напоминает гантель, состоящую из двух «лепестков», соединенных в одной точке недалеко от центра атома (рисунок ниже (p)).

Третья подоболочка обычно напоминает набор из четырех «лепестков», сгруппированных вокруг ядра атома. Эти формы подоболочек напоминают графические изображения диаграмм направленности антенн с лепестками, похожими на луковицы, простирающимися от антенны в различных направлениях (рисунок ниже (d)).


Орбитали:
(s) трехкратная симметричность;
(p) Показана: p x , одна из трех возможных ориентаций (p x , p y , p z), вдоль соответствующих осей;
(d) Показана: d x 2 -y 2 похожа на d xy , d yz , d xz . Показана: d z 2 . Количество возможных d-орбиталей: пять.

Допустимыми значениями орбитального квантового числа являются положительные целые числа, как и для главного квантового числа, но также включают в себя ноль. Эти квантовые числа для электронов обозначаются буквой l. Количество подоболочек равно главному квантовому числу оболочки. Таким образом, первая оболочка (n = 1) имеет одну подоболочку с номером 0; вторая оболочка (n = 2) имеет две подоболочки с номерами 0 и 1; третья оболочка (n = 3) имеет три подоболочки с номерами 0, 1 и 2.

Старое соглашение описания подоболочек использовало буквы, а не цифры. А этом формате, первая подоболочка (l = 0) обозначалась s, вторая подоболочка (l = 1) обозначалась p, третья подоболочка (l = 2) обозначалась d, и четвертая подоболочка (l = 3) обозначалась f. Буквы пришли от слов: sharp , principal , diffuse и fundamental . Вы по-прежнему можете увидеть эти обозначения во многих периодических таблицах, используемые для обозначения электронной конфигурации внешних (валентных ) оболочек атомов.


(a) представление атома серебра по Бору,
(b) орбитальное представление Ag с разделением оболочек на подоболочки (орбитальное квантовое число l).
Данная диаграмма не подразумевает ничего о фактическом положении электронов, а представляет только энергетические уровни.

Магнитное квантовое число : Магнитное квантовое число для электрона классифицирует, ориентацию фигуры подоболочки электрона. «Лепестки» подоболочек могут быть направлены в нескольких направлениях. Эти различные ориентации называются орбиталями. Для первой подоболочки (s; l = 0), которая напоминает сферу, «направление» не указывается. Для второй (p; l = 1) подоболочки в каждой оболочке, которая напоминает гантель, указывающую в трех возможных направлениях. Представьте три гантели, пересекающиеся в начале координат, каждая направлена вдоль своей оси в трехосной системе координат.

Допустимые значения для данного квантового числа состоят из целых чисел, начиная от -l до l, а обозначается данное число как m l в атомной физике и l z в ядерной физике. Чтобы рассчитать количество орбиталей в любой подоболочке, необходимо удвоить номер подоболочки и добавить 1, (2∙l + 1). Например, первая подоболочка (l = 0) в любой оболочке содержит одну орбиталь с номером 0; вторая подоболочка (l = 1) в любой оболочке содержит три орбитали с номерами -1, 0 и 1; третья подоболочка (l = 2) содержит пять орбиталей с номерами -2, -1, 0, 1 и 2; и так далее.

Как и главное квантовое число, магнитное квантовое число возникло прямо из экспериментальных данных: эффект Зеемана, разделение спектральных линий, подвергая ионизированный газ воздействию магнитного поля, отсюда и название «магнитное» квантовое число.

Спиновое квантовое число : как и магнитное квантовое число, данное свойство электронов атома было обнаружено с помощью экспериментов. Тщательное наблюдение спектральных линий показало, что каждая линия была на самом деле парой очень близко расположенных линий, было предположение, что эта так называемая тонкая структура была результатом каждого электрона, «вращающегося» вокруг своей оси, как планета. Электроны с разным «вращением» отдавали бы немного отличающиеся частоты света при возбуждении. Концепция вращающегося электрона в настоящее время устарела, будучи более подходящей для (неправильного) взгляда на электроны, как на отдельные частицы материи, а не как на «облака», но название осталось.

Спиновые квантовые числа обозначаются как m s в атомной физике и s z в ядерной физике. На каждой орбитали на каждой подоболочке в каждой оболочке может быть два электрона, один со спином +1/2, а другой со спином -1/2.

Физик Вольфганг Паули разработал принцип, объясняющий упорядоченность электронов в атоме в соответствии с этими квантовыми числами. Его принцип, называемый принципом запрета Паули , утверждает, что два электрона в одном атоме не могут занимать одинаковые квантовые состояния. То есть, каждый электрон в атоме имеет уникальный набор квантовых чисел. Это ограничивает число электронов, которые могут занимать какую-либо орбиталь, подоболочку и оболочку.

Здесь показано расположение электронов в атоме водорода:


С одним протоном в ядре, атом принимает один электрон для своего электростатического баланса (положительный заряд протона в точности уравновешивается отрицательным зарядом электрона). Этот электрон находится на нижней оболочке (n = 1), первой подоболочке (l = 0), на единственной орбитали (пространственная ориентация) этой подоболочки (m l = 0), с значением спина 1/2. Общий метод описания этой структуры выполняется с помощью перечисления электронов в соответствии с их оболочками и подоболочками согласно соглашению, называемому спектроскопическим обозначением . В этом обозначении, номер оболочки показывается как целое число, подоболочка как буква (s,p,d,f), и общее количество электронов в подоболочке (все орбитали, все спины) как верхний индекс. Таким образом, водород с его единственным электроном, размещенным на базовом уровне, описывается как 1s 1 .

Переходя к следующему атому (по порядку атомного номера), мы получаем элемент гелий:

Атом гелия состоит из двух протонов в ядре, а это требует два электрона, чтобы сбалансировать двойной положительный электрический заряд. Так как два электрона - один со спином 1/2 и другой со спином -1/2 - находятся на одной орбитали, электронная структура гелия не требует дополнительных подоболочек или оболочек, чтобы удерживать второй электрон.

Тем не менее, атом, требующий три и более электрона, будет нуждаться в дополнительных подоболочках, чтобы удерживать все электроны, так как только два электрона могут находиться на нижней оболочке (n = 1). Рассмотрим следующий атом в последовательности увеличивающихся атомных номеров, литий:


Атом лития использует часть емкости L оболочки (n = 2). Эта оболочка на самом деле имеет общую емкость величиной восемь электронов (максимальная емкость оболочки = 2n 2 электронов). Если мы рассмотрим структуру атома с полностью заполненной L оболочкой, мы увидим, как все комбинации подоболочек, орбиталей и спинов заняты электронами:

Часто, при назначении атому спектроскопического обозначения, любые полностью заполненные оболочки пропускаются, а не заполненные оболочки и заполненные оболочки высшего уровня обозначаются. Например, элемент неон (показан на рисунке выше), который имеет две полностью заполненных оболочки, может быть спектрально описан просто как 2p 6 , а не как 1s 22 s 22 p 6 . Литий с его полностью заполненной K-оболочкой и единственным электроном на L-оболочке, может быть описан просто как 2s 1 , а не 1s 22 s 1 .

Пропуск полностью заполненных оболочек нижнего уровня выполняется не только для удобства записи. Он также иллюстрирует основной принцип химии: химическое поведение элемента в первую очередь определяется его незаполненными оболочками. И водород, и литий обладают на своих внешних оболочках одним электроном (as 1 и 2s 1 соответственно), то есть, оба элемента обладают схожими свойствами. Оба обладают высокой реакционной способностью, и вступают в реакции почти одинаковыми способами (связывание с аналогичными элементами в аналогичных условиях). Не имеет большого значения, что литий имеет полностью заполненную K-оболочку под почти свободной L-оболочкой: незаполненная L-оболочка - это та оболочка, которая и определяет его химическое поведение.

Элементы, имеющие полностью заполненные внешние оболочки, классифицируются как благородные и отличаются почти полным отсутствием реакции с другими элементами. Эти элементы классифицировались как инертные, когда считалось, что они совсем не вступают в реакции, но, как известно, они образуют соединения с другими элементами при определенных условиях.

Так как элементы с одинаковыми конфигурациями электронов в своих внешних оболочках имеют сходные химические свойства, Дмитрий Менделеев соответственных образом организовал химические элементы в таблице. Данная таблица известна как , и современные таблицы следуют этому общему виду, показанному на рисунке ниже.


Периодическая таблица химических элементов

Дмитрий Менделеев, русский химик, был первым, кто разработал периодическую таблицу элементов. Несмотря на то, что Менделеев организовал свою таблицу в соответствии с атомной массой, а не атомным номером, и создал таблицу, которая была, не столь полезна, как современные периодические таблицы, его разработка выступает в качестве отличного примера научного доказательства. Увидев закономерности периодичности (аналогичные химические свойства в соответствии с атомной массой), Менделеев выдвинул гипотезу, что все элементы должны вписываться в эту упорядоченную схему. Когда он обнаружил «пустые» места в таблице, он следовал логике существующего порядка и предположил существование еще неизвестных элементов. Последующее открытие этех элементов подтвердило научную правильность гипотезы Менделеева, дальнейшие открытия привели к тому виду периодической таблицы, которую мы используем сейчас.

Вот так должна работать наука: гипотезы ведут к логическими заключениями и принимаются, изменяются или отклоняются в зависимости от согласованности экспериментальных данных с их выводами. Любой дурак может сформулировать гипотезу постфактум, чтобы объяснить имеющиеся экспериментальные данные, и многие так и делают. Что отличается научную гипотезу от спекуляции постфактум, так это предсказание будущих экспериментальных данных, которые пока не собраны, и, возможно, опровержение в результате этих данных. Смело ведите гипотезу к ее логическому заключению(-ям) и попытка предсказать результаты будущих экспериментов это не догматический прыжок веры, а скорее публичная проверка этой гипотезы, открытый вызов противникам гипотезы. Другими словами, научные гипотезы всегда «рискованны» из-за попытки предсказать результаты еще не проведенных экспериментов, и поэтому могут быть опровергнуты, если эксперименты пройдут не так, как ожидалось. Таким образом, если гипотеза правильно предсказывает результаты повторных экспериментов, ее ложность опровергнута.

Квантовая механика, сначала как гипотезы, а затем в качестве теории, оказалась чрезвычайно успешной в прогнозировании результатов экспериментов, следовательно, получила высокую степень научного доверия. У многих ученых есть основания полагать, что это неполная теория, так как ее прогнозы больше правдивы на микрофизических масштабах, а не в макроскопических размерах, но, тем не менее, это чрезвычайно полезная теория для объяснения и прогнозирования взаимодействия частиц и атомов.

Как вы уже увидели в этой главе, квантовая физика имеет важное значение при описании и прогнозировании множества различных явлений. В следующем разделе мы увидим, ее значение в электрической проводимости твердых веществ, в том числе и полупроводников. Проще говоря, ничего в химии или в физике твердого тела не имеет смысла в популярной теоретической структуре электронов, существующих как отдельные частицы материи, кружащиеся вокруг ядра атом, как миниатюрные спутники. Когда электроны рассматриваются как «волновые функции», существующие в определенных, дискретных состояниях, которые регулярны и периодичны, тогда поведение вещества может быть объяснено.

Подведем итоги

Электроны в атомах существуют в «облаках» распределенной вероятности, а не как дискретные частицы материи, вращающиеся вокруг ядра, как миниатюрные спутники, как показывают распространенные примеры.

Отдельные электроны вокруг ядра атом стремятся к уникальным «состояниям», описываемым четырьмя квантовыми числами: главное (радиальное) квантовое число , известное как оболочка ; орбитальное (азимутальное) квантовое число , известное как подоболочка ; магнитное квантовое число , описывающее орбиталь (ориентацию подоболочки); и спиновое квантовое число , или просто спин . Эти состояния квантовые, то есть «между ними» нет условий для существования электрона, кроме состояний, которые вписываются в схему квантовой нумерации.

Гланое (радиальное) квантовое число (n) описывает базовый уровень или оболочку, на которой находится электрон. Чем больше это число, тем больше радиус электронного облака от ядра атома, и тем больше энергия электрона. Главные квантовые числа являются целыми числами (положительными целыми)

Орбитальное (азимутальное) квантовое число (l) описывает форму электронного облака в конкретной оболочке или уровне и часто известно, как «подоболочка». В любой оболочке столько подоболочек (форм электронного облака), каково главное квантовое число оболочки. Азимутальные квантовые числа - целые положительные числа, начинающиеся с нуля и заканчивающиеся числом, меньшим главного квантового числа на единицу (n - 1).

Магнитное квантовое число (m l) описывает, какую ориентацию имеет подоболочка (фигура электронного облака). Подоболочки могут допускать столько различных ориентаций, чему равен удвоенный номер подоболочки (l) плюс 1, (2l+1) (то есть, для l=1, m l = -1, 0, 1), и каждая уникальная ориентация называется орбиталью. Эти числа - целые числа, начинающиеся от отрицательного значения номера подоболочки (l) через 0 и заканчивающиеся положительным значением номера подоболочки.

Спиновое квантовое число (m s) описывает другое свойство электрона и может принимать значения +1/2 и -1/2.

Принцип запрета Паули говорит, что два электрона в атоме не могут разделять один и тот же набор квантовых чисел. Следовательно, может быть не более двух электронов на каждой орбитали (спин=1/2 и спин=-1/2), 2l+1 орбиталей в каждой подоболочке, и n подоболочек в каждой оболочке, и не более.

Спектроскопическое обозначение - это соглашение для обозначения электронной структуры атома. Оболочки показываются как целые числа, за ними следуют буквы подоболочек (s, p, d, f) с числами в верхнем индексе, обозначающими общее количество электронов, находящихся в каждой соответствующей подоболочке.

Химическое поведение атома определяется исключительно электронами в незаполненных оболочках. Оболочки низкого уровня, которые полностью заполнены мало или совсем не влияют на химические характеристики связывания элементов.

Элементы с полностью заполненными электронными оболочками почти полностью инертны, и называются благородными элементами (ранее были известны как инертные).

От греческого «фюзис» происходит слово «физика». Это означает «природа». Аристотель, живший в четвертом веке до нашей эры, впервые ввел данное понятие.

«Русской» физика стала с подачи М. В. Ломоносова, когда он перевел первый учебник с немецкого языка.

Наука физика

Физика — это одна из основных В мире вокруг постоянно происходят различные процессы, изменения, то есть явления.

Например, кусочек льда в теплом месте начнет таять. А вода в чайнике на огне закипает. Электрический ток, пропущенный по проволоке, нагреет ее и даже раскалит. Каждый из этих процессов — явление. В физике это механические, магнитные, электрические, звуковые, тепловые и световые изменения, изучающиеся наукой. Они еще называются физическими явлениями. Рассматривая их, ученые выводят законы.

Задача науки состоит в открытии этих законов и их исследовании. Природу изучают такие науки, как биология, география, химия и астрономия. Все они применяют физические законы.

Термины

Помимо обычных в физике используют и специальные слова, называющиеся терминами. Это «энергия» (в физике это мера разных форм взаимодействия и движения материи, а также перехода из одной в другую), «сила» (мера интенсивности влияния других тел и полей на какое-либо тело) и многие другие. Часть из них постепенно вошла в разговорную речь.

Например, используя слово «энергия» в повседневной жизни применительно к человеку, мы можем оценивать последствия его действий, но энергия в физике — это мера изучения множеством разных способов.

Все тела в физике называют физическими. Они имеют объем и форму. Состоят из веществ, которые, в свою очередь, являются одними из видов материи — это все существующее во Вселенной.

Опыты

Многое из того, что знают люди, было получено в ходе наблюдений. Чтобы изучить явления, их постоянно наблюдают.

Возьмем, например, падение на землю различных тел. Необходимо выяснить, отличается ли это явление при падении тел неодинаковой массы, разной высоте и так далее. Ждать и наблюдать за разными телами было бы очень долго и далеко не всегда успешно. Поэтому для подобных целей проводят опыты. Они отличаются от наблюдений, так как их специально реализуют по заранее составленному плану и с определенными целями. Обычно в плане строят какие-либо догадки предварительно, то есть выдвигают гипотезы. Таким образом, в ходе проведения опытов они будут опровергаться или подтверждаться. После обдумывания и объяснения результатов опытов делаются выводы. Так получаются научные знания.

Величины и единицы их измерения

Часто, изучая какие-либо выполняют разные измерения. При падении тела, к примеру, измеряют высоту, массу, скорость и время. Все это является то есть тем, что можно измерить.

Измерение величины означает сравнение ее с такой же величиной, которая принимается за единицу (длина стола сравнивается с единицей длины — метром или другой). Каждая такая величина имеет свои единицы.

Во всех странах стараются пользоваться едиными единицами. В России, как и в других государствах, используется Международная система единиц СИ (что означает "система интернациональная"). В ней приняты следующие единицы:

  • длина (характеристика протяженности линий в числовом выражении) — метр;
  • время (протекание процессов, условие возможного изменения) — секунда;
  • масса (это в физике характеристика, определяющая инертные и гравитационные свойства материи) — килограмм.

Часто бывает необходимо применять единицы, намного превышающие общепринятые по величине — кратные. Их называют с соответствующими приставками из греческого: «дека», «гекто», «кило» и так далее.

Единицы, которые меньшие принятых, называются дольными. К ним применяются приставки из латинского языка: «деци», «санти», «милли» и так далее.

Приборы для измерений

Чтобы проводить опыты, нужны приборы. Простейшими из них являются линейка, цилиндр, рулетка и другие. С развитием науки совершенствуются, усложняются и появляются новые приборы: вольтметры, термометры, секундомеры и другие.

В основном приборы имеют шкалу, то есть штриховые деления, на которых написаны значения. Перед измерением определяют цену деления:

  • берут два штриха шкалы со значениями;
  • из большего вычитают меньшее, а полученное число делят на число делений, которые находятся между.

Например, два штриха со значениями "двадцать" и "тридцать", расстояние между которыми разделено на десять промежутков. В этом случае цена деления будет равна единице.

Точные измерения и с погрешностью

Измерения выполняются более или менее точно. Допускаемая неточность называется погрешностью. При измерении она не может быть больше цены деления прибора для измерений.

Точность зависит от цены деления и правильного использования прибора. Но в итоге в любом измерении получаются только приблизительные значения.

Теоретическая и экспериментальная физика

Это главные ветви науки. Может казаться, что они очень далеки друг от друга, тем более что большинство людей являются или теоретиками, или экспериментаторами. Однако они развиваются постоянно бок о бок. Любую проблему рассматривают и теоретики, и экспериментаторы. Делом первых является описание данных и выведение гипотез, а вторые проверяют теории на практике, проводя эксперименты и получая новые данные. Иногда достижения вызываются лишь экспериментами, без описываемых теорий. В других случаях, наоборот, удается получить результаты, которые проверяются позже.

Квантовая физика

Это направление зародилось в конце 1900 года, когда была открыта новая физическая фундаментальная константа, получившая название постоянной Планка в честь немецкого физика, ее открывшего, - Макса Планка. Он решил проблему спектрального распределения света, который излучают нагретые тела, в то время как классическая общая физика этого сделать не смогла. Планк высказал гипотезу о квантовой энергии осциллятора, которая была несовместима с классической физикой. Благодаря ей многие физики стали пересматривать старые понятия, изменять их, в результате чего возникла квантовая физика. Это совершенно новое представление о мире.

и сознание

Феномен человеческого сознания с точки зрения не является совсем новым. Основа его была заложена еще Юнгом и Паули. Но лишь сейчас, со становлением этого нового направления науки, феномен стал рассматриваться и изучаться более масштабно.

Квантовый мир многолик и многомерен, в нем есть множество классических лиц и проекций.

Двумя основными свойствами в рамках предложенной концепции являются сверхинтуиция (то есть получение как бы ниоткуда информации) и управление субъективной реальностью. В обычном сознании человек может видеть лишь одну картину мира и не способен рассмотреть две сразу. Тогда как в реальности существует их огромное количество. Все это в совокупности и есть квантовый мир и свет.

Это физика квантовая учит видеть новую для человека реальность (хотя многие восточные религии, а также маги давно владеют такой техникой). Необходимо лишь поменять человеческое сознание. Теперь человек неотделим от всего мира, но во внимание принимаются интересы всего живого и сущего.

Именно тогда, погружаясь в состояние, где он способен увидеть все альтернативы, ему приходит озарение, являющееся абсолютной истиной.

Принцип жизни с точки зрения квантовой физики заключается для человека в том, чтобы он, помимо всего прочего, внес свой вклад в лучшее мироустройство.

Согласно определению, Квантовая физика - раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики.Квантовая физика и её основные теории - квантовая механика, квантовая теория поля - были созданы в первой половине XX века многими учёными, среди которых Макс Планк, Альберт Эйнштейн, Артур Комптон, Луи де Бройль, Нильс Бор, Эрвин Шрёдингер, Поль Дирак, Вольфганг Паули. Квантовая физика объединяет несколько разделов физики, в которых принципиальную роль играют явления квантовой механики и квантовой теории поля, проявляющиеся на уровне микромира, но и имеющие (что важно) следствия на уровне макромира.

Сюда относятся:

квантовая механика;

квантовая теория поля - и её применения: ядерная физика, физика элементарных частиц, физика высоких энергий;

квантовая статистическая физика;

квантовая теория конденсированных сред;

квантовая теория твёрдого тела;

квантовая оптика.

Сам термин Квант (от лат. quantum - «сколько») - неделимая порция какой-либо величины в физике. В основе понятия лежит представление квантовой механики о том, что некоторые физические величины могут принимать только определённые значения (говорят, что физическая величина квантуется). В некоторых важных частных случаях эта величина или шаг её изменения могут быть только целыми кратными некоторого фундаментального значения - и последнее называют квантом.

Кванты некоторых полей имеют специальные названия:

фотон - квант электромагнитного поля;

глюон - квант векторного (глюонного) поля в квантовой хромодинамике (обеспечивает сильное взаимодействие);

гравитон - гипотетический квант гравитационного поля;

фонон - квант колебательного движения атомов кристалла.

Вообще Квантование - процедура построения чего-либо с помощью дискретного набора величин, например, целых чисел,

в отличие от построения с помощью непрерывного набора величин, например, вещественных чисел.

В физике:

Квантование - построение квантового варианта некоторой неквантовой (классической) теории или физической модели

в соответствии с фактами квантовой физики.

Фейнмановское квантование - квантование в терминах функциональных интегралов.

Вторичное квантование - метод описания многочастичных квантовомеханических систем.

Квантование Дирака

Геометрическое квантование

В информатике и электронике:

Квантование - разбиение диапазона значений некоторой величины на конечное число интервалов.

Шум квантования - ошибки, возникающие при оцифровке аналогового сигнала.

В музыке:

Квантование нот - перемещение нот к ближайшим ритмическим долям в секвенсоре.

Необходимо отметить, что, несмотря на ряд определенных успехов в описании природы многих явлений и процессов, протекающих в окружающем нас мире, на сегодняшний день квантовая физика вместе со всем комплексом входящих в нее поддисциплин не является цельной законченной концепцией, и хотя изначально подразумевалось, что именно в рамках квантовой физики будет построена единая цельная, непротиворечивая и объясняющая все известные явления дисциплина, на сегодняшний день она таковой не является, например, кватовая физика не в состоянии объяснить принципы и представить работающую модель гравитации, хотя никто не сомневается в том, что гравитация- один из фундаментальных базовых законов вселенной, и невозможность объяснить ее с точки зрения квантовых подходов говорит лишь о том, что они несовершенны, и не являются законченной и окончательной истиной в последней инстанции.

Более того, внутри самой квантовой физики существуют разные течения и направления, представители каждого из которых предлагают свои объяснения для феноменологических экспериментов, не имеющих однозначной трактовки. Внутри самой квантовой физики у представляющих ее ученых нет единого мнения и единого понимания, зачастую их трактовки и объяснения одних и тех же явлений даже противоположны друг другу. И читатель должен понимать, что сама квантовая физика – лишь промежуточная концепция,совокупность состовляющих ее методов, подходов и алгоритмов, и вполне может статься, что через некоторое время будет разработана гораздо более полная, совершенная и непротиворечивая концепция, с иными подходами и иными методами.Тем не менее, для читателя наверняка будут интересны основные явления, которые являются предметом изучения квантовой физики,и которые же при объединении объясняющих их моделей в единую систему вполне могут стать основой для совершенно новой научной парадигмы. Итак, вот эти явления:

1. Корпускулярно-волновой дуализм.

Изначально предполагалось, что корпускулярно-волновой дуализм свойственен только для фотонов света, которые в одних случаях

ведут себя, как поток частиц, а в других, как волны. Но многие эксперименты квантовой физики показали, что данное поведение свойственно не только для фотонов,а и для любых частиц, в том числе, составляющих физически плотную материю. Одним из самых известных экспериментов в этой области является эксперимент с двумя щелями, когда на пластинку, в которой имелись две параллельные узкие прорези, направлялся поток электронов, за пластиной находился непроницаемый для электронов экран, на котором можно было видеть, какие именно появляются на нем картины от попадания электронов. И в одних случаях эта картина представляла из себя две параллельные полоски, такие же, как и две прорези на пластине перед экраном, что характеризовало поведение пучка электронов, вроде как потока маленьких шариков, но в других случаях на экране формировалась картина, характерная при интерференции волн (множество параллельных полос,с самой толстой в центре, и более тонким по краям). При попытке исследовать процесс более детально выяснилось, что один электрон может как пройти только через одну щель, так и через две щели одновременно, что совершенно исключено в том случае, если электрон был бы только твердой частицей. На самом деле, в настоящее время уже существует точка зрения, хотя и не доказанная, но по-видимому очень близкая к истине, и имеющая колоссальное значение с точки зрения миропонимания, что электрон на самом деле не является ни волной, ни частицей, а является переплетением первичных энергий, или материй, скрученных между собой и циркулирующих по определенной орбите, и в некоторых случаях демонстрирующих свойства волны. а в некоторых-свойства частицы.

Многие обыватели очень плохо понимают, а что же такое электронное облако, окружающее атом, о котором рассказывалось еще в

школе, ну что это такое, облако электронов, то есть что их там очень много, этих электронов, нет, не так, облако и есть один и тот же электрон,

просто он как бы размазан по орбите, как капля, и при попытке определить его точное местоположение всегда приходится использовать

вероятностные подходы, так как, хотя было проведено огромное количество экспериментов, никогда не удавалось точно установить, а где же на орбите находится электрон в заданный момент времени, можно определить это только с определенной вероятностью. И это все по той же причине, что электрон не твердая частица, и изображать его, как в школьных учебниках, как твердый шарик, кружащийся на орбите, в корне неверно и формирует у детей ошибочное представление о том,как на самом деле происходят в природе процессы на микроуровне, везде вокруг нас, в том числе, и в нас самих.

2. Взаимосвязь наблюдаемого и наблюдателя, влияние наблюдателя на наблюдаемое.

В тех же экспериментах с пластиной с двумя щелями и экраном, и в подобных им, было неожиданно установлено, что поведение электронов как волны и как частицы находилось во вполне измеримой зависимости от того, присутствовал ли в опыте непосредственный ученый-наблюдатель или нет, и если присутствовал, то какие ожидания у него были от результатов эксперимента!

Когда наблюдавший ученый ожидал, что электроны будут вести себя как частицы, они и вели себя как частицы, но когда его место занимал ученый, ожидавший поведения как волн, электроны вели себя как поток волн! Ожидание наблюдателя напрямую влияет на результат эксперимента, хотя и не во всех случаях, но во вполне измеримом проценте экспериментов! Важно, очень важно понимать, что наблюдаемый эксперимент и сам наблюдатель не являются чем-то отделенным друг от друга, но являются частью одной единой системы, неважно, какие стенки бы при этом между ними ни стояли. Чрезвычайно важно осознавать, что весь процесс нашей жизни представляет из себя непрерывное и беспрестанное наблюдение,

за другими людьми, явлениями и объектами, и самим собой. И хотя ожидание наблюдаемого не всегда точно определяет результат действия,

помимо этого, есть еще и много других факторов, тем не менее, влияние этого весьма ощутимо.

Давайте вспомним, сколько раз в нашей жизни бывали ситуации, когда делает человек какое-то дело, к нему подходит другой и начинает за ним внимательно наблюдать, и в этот момент этот человек либо делает ошибку, либо какое-то непроизвольное действие. И многим знакомо это неуловимое ощущение, когда ты делаешь какое-то действие, за тобой начинают внимательно наблюдать,и в результате у тебя перестает получаться делать это действие, хотя до появления наблюдателя ты делал его вполне успешно.

А теперь вспомним, что большинство людей воспитаны и взращены, как в школах, так и в институтах, что все вокруг, и физически плотная материя, и все предметы, и мы сами, состоим из атомов, а атомы состоят из ядер и вращающихся вокруг них электронов, а ядра - это протоны и нейтроны,и все это такие вот твердые шарики, которые соединены между собой разными типами химических связей, и именно типы этих связей определяют характер и свойства вещества. А о возможном поведении частиц с точки зрения волн, а значит, и всех предметов, из которых эти частицы состоят, и нас самих,

никто не говорит! Большинство этого не знает, в это не верит и этим не пользуется! То есть ожидает от окружающих предметов поведения именно как совокупности твердых частиц. Ну они себя и ведут, как набор частиц в разных комбинациях. Поведения предмета из физически плотной материи, как потока волн, не ожидает почти никто,это кажется невозможным здравому смыслу, хотя никаких фундаментальных препятствий этому нет, а все потому, что в людей с детства закладывают неверные и ошибочные модели и понимание окружающего мира, в результате, когда человек вырастает,он и не пользуется этими возможностями, он даже не знает, что они есть. А как можно пользоваться тем, чего ты не знаешь. И так как таких неверящих и незнающих людей на планете миллиарды, то вполне возможно, что совокупность общественного сознания всех людей земли,как эдакое среднее по больнице, определяет как заданное по умолчанию устройство мира вокруг как набора частиц, строительных блоков, и ничего больше (ведь по одной из моделей все человечество представляет из себя огромную совокупность наблюдателей).

3. Квантовая нелокальность и квантовая сцепленность.

Одним из краеугольных и определеляющих понятий квантовой физики является квантовая нелокальность и напрямую связанная с ней квантовая сцепленность, или квантовая запутанность, что в общем одно и то же. Яркими примерами квантовой сцепленности являются, например, эксперименты, проведенные Аленом Аспектом, в которых проводилась поляризация фотонов, излученных одним и тем же источником, и принятых двумя разными приемниками. И получалось так, что если изменить поляризацию (ориентацию спина) одного фотона, одновременно с этим меняется и поляризация второго фотона, и наоборот, причем происходит это изменение поляризации мгновенно, независимо от расстояния, на котором эти фотоны находятся друг от друга. Выглядит это так, как будто два фотона, излученные одним источником, связаны между собой, хотя никакой явной пространственной связи между ними нет, и изменение параметров одного фотона мгновенно приводит к изменению параметров другого фотона. Важно понимать, что явление квантовой сцепленности, или запутанности, справедливо не только для микро, но и для макроуровня.

Одним из первых наглядных экспериментов в этой области являлся эксперимент российских (тогда еще советских) физиков-торсионщиков.

Схема эксперимента была такова: брали кусок самого обыкновенного бурого угля, добываемого в шахтах для сожжения в котельных,и распиливали его на 2 части. Поскольку с углем человечество знакомо уже очень давно, то он является очень хорошо изученным объектом, и с точки зрения его физических и химических свойств, молекулярных связей, тепла, выделяемого при сгорании на единицу объема и тд. Так вот, один кусок этого угля остался в лаборатории в Киеве, второй кусок угля отвезли в лабораторию в Кракове. Каждый из этих кусков в свою очередь был разрезан на 2 одинаковые части, итого получилось - 2 одинаковых куска одного и того же угля было в Киеве, и 2 одинаковых куска -в Кракове. Затем взяли по одному куску в Киеве и Кракове, и одновременно оба их сожгли, и измерили количество тепла, выделяемого при сгорании. Оно, как и следовало ожидать, оказалось примерно одинаковым. Затем, торсионным генератором был облучен кусок угля в Киеве (тот, который был в Кракове, ничем не облучался), и снова оба этих куска сожгли. И в этот раз оба этих куска дали эффект примерно на 15% больше тепла при сжигании, чем при сожжении первых двух кусков. Увеличение тепловыделения при сгорании угля в Киеве было объяснимо, ведь на него подействовали излучением, в результате его физическая структура изменилась, что и вызвало учеличение тепловыделения при сжигании примерно на 15%. Но вот тот кусок, который находился в Кракове, тоже увеличил тепловыделение на 15%, хотя его ничем не облучали! Этот кусок угля тоже изменил свои физические свойства, хотя облучали не его, а другой кусок (с которым они когда-то были частью одного целого, что является принципиально важным моментом для понимания сути), и расстояние в 2000 км между этими кусками совершенно не было препятствием, изменения структуры у обоих кусков угля происходили мгновенно,что и было установлено при многократном повторении эксперимента. Но надо понимать, что данный процесс совершенно необязательно справедлив только для угля, можно использовать любой другой материал, и эффект, вполне ожидаемо, будет совершенно таким же!

То есть, квантовая сцепленность и квантовая нелокальность справедлива и на макроскопическом мире, а не только в микромире элементарных частиц - в общем-то это вполне справделиво, ведь все макрообъекты и состоят из этих самых элементарных частиц!

Справедливости ради стоит заметить, что физики-торсионщики считали многие квантовые явления проявлением торсионных полей, а некоторые квантовые физики, наоборот, считали торсионные поля частным случаем проявления квантовых эффектов. Что в общем-то неудивительно, ведь и те, и другие изучают и исследуют один и тот же мир вокруг, с одними и теми же универсальными законами, что на микро, что на макроуровне,

и пусть используют при объяснении явлений разные подходы и разную терминологию, суть все равно одна.

А справедливо ли это явление только для неживых объектов, как обстоит дело с живыми организмами, возможно ли там обнаружение похожих эффектов?

Выяснилось, что да, и одним из доказавших это был американский доктор Клив Бакстер. Изначально этот ученый специализировался на испытаниях полиграфа, то есть прибора, детектора лжи, применявшегося для допроса испытуемых в лабораториях ЦРУ. Был проведен целый ряд успешных экспериментов по регистрации и установлению у допрашиваемых разных эмоциональных состояний в зависимости от показаний полиграфа, и разработаны эффективные методики, и сегодня используемые для допросов посредством детектора лжи. Со временем интересы доктора расширились, и он начал эксперименты с растениями и животными. Среди ряда очень интересных результатов следует выделить один, имеющий прямое отношение к квантовой сцепленности и квантовой нелокальности, а именно следующий – у участника эксперимента брали на пробу живые клетки изо рта и помещали их в пробирку (известно, что взятые на пробу клетки

человека живут еще в течение нескольких часов), эту пробирку подключали к полиграфу. Затем человек, у которого брали эту пробу, уезжал за несколько десятков или даже сотен километров, и испытывал там разнообразные стрессовые ситуации. За годы исследований Клив Бакстер хорошо изучил, какие именно показания полиграфа сответствовали определенным стрессовым состояниям человека. Велся строгий протокол, где четко регистрировалось время попадания в стрессовые ситуации, и также велся протокол регистрации показаний полиграфа, подключенного к пробирке с пока еще живыми клетками.И выяснилось удивительное - несмотря на огромные расстояния между испытуемым и пробиркой с живыми клетками, была выявлена почти идеальная синхронность между вхождением человека в стрессовую ситуацию и почти одновременной реакцией клеток в виде соответствующих графиков полиграфа!То есть, хотя клетки, взятые у человека на пробу, и сам человек были разделены в пространстве, по-прежнему между ними существовала связь,и изменение эмоционального и психического состояния человека практически немедленно отражалось в реакции клеток в пробирке.

Результат повторялся множество раз, были попытки установить свинцовые экраны с целью изолировать пробирку с полиграфом, но это не помогало,

все равно даже за свинцовым экраном происходила почти синхронная регистрация изменения состояний.

То есть квантовая сцепленность и квантовая нелокальность справделива и для неживой, и для живой природы, более того, это совершенно естественное природное явление, происходящее повсюду вокруг нас! Думаю, многих читателей интересует, и даже более чем, а возможны ли путешествия не только в пространстве, но и во времени, может быть, существуют какие-либо эксперименты, подтверждающие это, и вероятно, здесь может помочь квантовая сцепленность и квантовая нелокальность? Оказалось, что такие эксперименты есть! Один из них был проведен известным советским астрофизиком Николаем Александровичем Козыревым, и заключался он в следующем. Всем известно, что то положение звезды, которые мы видим на небе, не является истинным ведь за те тысячи лет, что свет летит от звезды до нас, сама она за это время уже сместилась, на вполне измеримое расстояние. Зная расчетную траекторию звезды, можно предположить, в каком месте она должна находиться сейчас, и более того, можно рассчитать, где она должна должна находиться в будущем в следующий момент времени (через временной период, равный тому времени, которое нужно свету, чтобы долететь от нас до этой звезды), если аппроксимировать траекторию ее движения.И с помощью телескопа особой конструкции (зеркального телескопа) было подтверждено, что не только существует тип сигналов,

распространяющийся по вселенной практически мгновенно, независимо от расстояния в тысячи световых лет (по сути, "размазывающийся" в пространстве, как электрон по орбите), но и возможно регистрировать сигнал из будущего положения звезды,то есть того положения, в котором ее еще нет, она там будет еще очень нескоро! Причем именно в этой расчетной точке траектории. Здесь поневоле возникает предположение, что, подобно электрону, "размазанному" по орбите, и являющегося по сути квантово-нелокальным объектом, звезда, вращающаяся вокруг центра галактики, как электрон вокруг ядра атома, также обладает некоторыми похожими свойствами. И также, данный эксперимент доказывает возможность передачи сигналов не только в пространстве,но и во времени. Данный эксперимент достаточно активно дискредитируется в средствах массовой информации,

с приписыванием ему мифических и мистических свойств, но нужно отметить, что он был повторен также уже после смерти Козырева на двух разных лабораторных базах, двумя независимыми группами ученых, одной в Новосибирске (под руководством академика Лаврентьева),а второй на Украине, исследовательской группой Кукоча, причем на разных звездах, и везде были получены одни и те же результаты, подтверждающие исследования Козырева! Справедливости ради, стоит отметить, что и в электротехнике, и в радиотехнике известны случаи, когда при определенных условиях сигнал оказывается принят приемником за несколько мгновений до того, как был излучен источником. Данный факт, как правило, игнорировался и принимался за ошибку,и к сожалению, часто, похоже, у ученых просто не хватало духу назвать черное черным, а белое белым, лишь потому, что это якобы невозможно и этого не может быть.

А были ли еще проведены некие похожие эксперименты, которые бы подтверждали данный вывод? оказывается, были, доктором медицинских наук,академиком Влаилем Петровичем Казначеевым. Было проведено обучение операторов, один из которых находился в Новосибирске, а второй- на севере, на Диксоне. Была разработана система символов, хорошо выученная и усвоенная обоими операторами. В указанное время с помощью зеркал Козырева осуществлялась передача сигнала одним оператором к другому, причем заранее принимающей стороне не было известно, какой именно из символов будет отправлен. Велся строгий протокол, в котором регистрировалось время отправки и приема символов. И после сверки протоколов оказывалось, что некоторые символы были приняты почти одновременно с отправлением, некоторые были приняты с опозданием, что вроде бы возможно и вполне естественно, но вот некоторые символы были приняты оператором ДО того, как были отправлены! То есть, по сути, были отправлены из будущего в прошлое. Данные эксперименты до сих пор не имеют строго официального научного объяснения, но очевидно, что имеют одну и ту же природу. Можно на их основании с достаточной степенью точности предположить, что квантовая сцепленность и квантовая нелокальность не просто возможна, но и существует не только в пространстве, но и во времени!

Квантовая физика радикально изменила наши представления о мире. Согласно квантовой физике мы можем влиять своим сознанием на процесс омоложения!

Почему это возможно? С точки зрения квантовой физики, наша действительность – источник чистых потенциальных возможностей, источник сырья, из которого состоит наше тело, наш разум и вся Вселенная.Универсальное энергетическое и информационное поле никогда не перестает изменяться и преобразовываться, каждую секунду превращаясь во что-то новое.

В 20 веке, во время физических экспериментов с субатомарными частицами и фотонами, было обнаружено, что факт наблюдения за течением эксперимента изменяет его результаты. То, на что мы фокусируем наше внимание - может реагировать.

Этот факт подтверждает классический эксперимент, который каждый раз удивляет ученых. Он повторялся во многих лабораториях и всегда получались одни и те же результаты.

Для этого опыта приготовили источник света и экран с двумя щелями. В качестве источника света использовалось устройство, которое «выстреливало» фотонами в виде однократных импульсов.

За ходом эксперимента велось наблюдение. После окончания опыта, на фотобумаге, которая находилась за щелями были видны две вертикальные полоски. Это следы фотонов, которые проходили сквозь щели и засвечивали фотобумагу.

Когда этот эксперимент повторяли в автоматическом режиме, без участия человека, то картина на фотобумаге изменялась:

Если исследователь включал прибор и уходил, и через 20 минут фотобумага проявлялась, то на ней обнаруживалось не две, а множество вертикальных полосок. Это были следы излучения. Но рисунок был другим.

Структура следа на фотобумаге напоминала след от волны, которая проходила сквозь щели.Свет может проявлять свойства волны или частицы.

В результате простого факта наблюдения волна исчезает и превращается в частицы. Если не вести наблюдение, то на фотобумаге проявляется след волны. Этот физический феномен получил название «Эффект Наблюдателя».

Эти же результаты были получены и с другими частицами. Эксперименты повторялись многократно, но каждый раз они удивляли ученых. Так было обнаружено, чтона квантовом уровне материя реагирует на внимание человека. Это было новым в физике.

По представлениям современной физики все материализуется из пустоты. Эта пустота получила названия «квантовое поле», «нулевое поле» или «матрица». Пустота содержит энергию, которая может превращаться в материю.

Материя состоит из сконцентрированной энергии - это фундаментальное открытие физики 20 века.

В атоме нет твердых частей. Предметы состоят из атомов. Но почему предметы твердые? Палец приложенный к кирпичной стене не проходит сквозь нее. Почему? Это связано с различиями частотных характеристик атомов и электрическими зарядами. У каждого типа атомов своя частота вибраций. Этим определяются различия физических свойств предметов. Если бы было можно менять частоту вибраций атомов, из которых состоит тело, то человек смог бы пройти сквозь стены. Но вибрационные частоты атомов руки и атомов стены близки. Поэтому палец упирается в стену.

Для любых видов взаимодействий необходим частотный резонанс.

Это легко понять на простом примере. Если осветить каменную стену светом карманного фонаря, то свет будет задержан стеной. Однако излучение мобильного телефона легко пройдет сквозь эту стену. Все дело в различиях частот между излучением фонаря и мобильного телефона. Пока вы читаете этот текст, сквозь ваше тело проходят потоки самого различного излучения. Это космическое излучение, радиосигналы, сигналы миллионов мобильных телефонов, излучение, идущее из земли, солнечная радиация, излучение, которое создают бытовые приборы и т.п.

Вы это не ощущаете, поскольку можете видеть только свет, а слышать только звук. Даже если вы сидите в тишине с закрытыми глазами, сквозь вашу голову проходят миллионы телефонных разговоров, картины телевизионных новостей и сообщений по радио. Вы это не воспринимаете, поскольку нет резонанса частот между атомами из которых состоит ваше тело и излучением. Но если резонанс есть, - то вы немедленно реагируете. Например, когда вы вспоминаете о близком человеке, который только что подумал о вас. Все во вселенной подчиняется законам резонанса.

Мир состоит из энергии и информации. Эйнштейн, после долгих размышлений об устройства мира сказал: »Единственная существующая во вселенной реальность - это поле». Подобно тому, как волны являются творением моря, все проявления материи: организмы, планеты, звезды, галактики - это творения поля.

Возникает вопрос, как из поля создается материя? Какая сила управляет движением материи?

Исследования ученых привели их к неожиданному ответу. Создатель квантовой физики Макс Планк во время своей речи при получении Нобелевской премии произнес следующее:

«Все во Вселенной создается и существует благодаря силе. Мы должны предполагать, что за этой силой стоит сознательный разум, который является матрицей всякой материи«.

МАТЕРИЯ УПРАВЛЯЕТСЯ СОЗНАНИЕМ

На рубеже 20 и 21 века в теоретической физике появились новые идеи, которые позволяют объяснить странные свойства элементарных частиц. Частицы могут возникать из пустоты и внезапно исчезать. Ученые допускают возможность существования параллельных вселенных. Возможно частицы переходят из одного слоя вселенной в другой. В развитии этих идей участвуют такие знаменитости, как Stephen Hawking, Edward Witten, Juan Maldacena, Leonard Susskind.

Согласно представлениям теоретической физики - Вселенная напоминает матрешку, которая состоит из множества матрешек - слоев. Это варианты вселенных - параллельные миры. Те, что расположены рядом - очень похожи. Но чем дальше слои друг от друга слои - тем меньше между ними сходства. Теоретически, для того, что бы переходить из одной вселенной в другую, не требуются космические корабли. Все возможные варианты расположены один в другом. Впервые эти идеи были высказаны учеными в середине 20 века. На рубеже 20 и 21 века они получили математическое подтверждение. Сегодня подобная информация легко принимаются публикой. Однако пару сотен лет назад, за такие высказывания могли сжечь на костре или объявить сумасшедшим.

Все возникает из пустоты. Все находится в движении. Предметы - иллюзия. Материя состоит из энергии. Все создается мыслью. Эти открытия квантовой физики не содержат ничего нового. Все это было известно древним мудрецам. Во многих мистических учениях, которые считались секретными и были доступны только посвященным, говорилось, что нет никакого различия между мыслями и предметами. Все в мире наполнено энергией. Вселенная реагирует на мысль. Энергия следует за вниманием.

То, на чем ты фокусируешь свое внимание, начинает изменяться. Эти мысли в различных формулировках даются в Библии, древних гностических текстах, в мистических учениях, которые возникли в Индии и Южной Америке. Об этом догадывались строители древних пирамид. Эти знания являются ключом к новым технологиям, которые сегодня используются для управления реальностью.

Наше тело – это поле энергии, информации и разума, находящееся в состоянии постоянного динамического обмена с окружающей средой. Импульсы разума постоянно, каждую секунду придают телу новые формы для приспособления к меняющимся требованиям жизни.

С точки зрения квантовой физики, наше физическое тело под воздействием нашего разума способно совершить квантовый скачок из одного биологического возраста в другой, не проходя через все промежуточные возрасты. опубликовано

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet