Что такое графическая работа. Расчетно-графическая работа по дорожному строительству. Практические и графические работы по черчению

Задание «Типы линий»

Целью выполнения графической работы, является приобретение навыков работы с чертежными инструментами, а также закрепление линий чертежа, является приобретение навыков работы с чертежными инструментами, а также закрепление линий чертежа
Для выполнения графической работы 2 студенту необходимо знать тему «Правила вычерчивания контуров технических деталей» /1/§1..4, /2/ §3…§9, /3 / работа 2 .

2 .1 Выполнение линий чертежа

Для правильного выполнения заданий графической работы необходимо ознакомится с ГОСТ 2.303-68 и 2.304-68 ЕСКД.

Обвести линии чертежа по ГОСТ 2.304-81.

1. Сплошная толстая основная линия Применяется для изображения видимого контура предмета, контура вынесенного сечения и входящего в состав разреза и имеет толщину S = 0,5…1,4 мм.

2. Сплошная тонкая линия применяется для изображения размерных и выносных линий, линий штриховки сечений, линии контура наложенного сечения, линии-выноски, линии для изображения пограничных деталей («обстановки»).

3. Сплошная волнистая линия применяется для изображения линий обрыва, линии разграничения вида и разреза.


4. Штриховая линия применяется для изображения невидимого контура. Длина штрихов

5. Штрихпунктирная тонкая линия применяется для изображения осевых и центровых линий, линий сечения, являющихся осями симметрии для наложенных или вынесенных сечений. Длина штрихов должна быть одинаковая и выбирается примерно от 5 до 30 мм в зависимости от размера изображения. Расстояние между штрихами -3…5 мм.

6. Штрихпунктирная утолщенная линия применяется для изображения элементов, расположенных перед секущей плоскостью («Наложенная проекция»), линий обозначающих поверхности, подлежащих термообработке или покрытию.

7. Разомкнутая линия применяется для обозначения линии сечения. Длина штрихов берется в интервале 8…20 мм в зависимости от размеров изображения.

8. Сплошная тонкая с изломами линия применяется при длинных линиях обрыва.

9. Штрихпунктирная линия с двумя точками применяется для изображения частей изделий в крайних или промежуточных положениях; линий сгиба на развертках; для изображения развертки, совмещенной с видом.

Учитывая степень сложности чертежей и величину их форматов, при начертании линий следует брать размеры, приведенные в таблице 1.1.

В таблице, также даны рекомендации для подбора карандашей, применяемых при обводке чертежа. Обводка придает чертежу четкость, контрастность и облегчает чтение чертежа. Для получения четких и черных линий карандаш нужно вести с достаточным нажимом. Рекомендуется прямые линии обводить двумя встречными движениями с одной установки линейки; окружности – делая два оборота циркуля. Так как окружности трудно проводить с сильным нажимом, то в циркуль следует вставлять грифель несколько мягче грифеля карандаша (не более чем на одну ступень). Все линии обведенного чертежа независимо от их структуры, должны иметь одинаковую яркость .

Задание (лист 1) Выполняется на листе формата А4, по своему варианту и посвящено проведению линий по ГОСТ 2.303-68 (см. табл. 1.1).

Указания по выполнению задания

Выполнение задания удобнее начинать с проведения через середину внутренней рамки чертежа тонкой вертикальной линии, на которой делают пометки в соответствии с размерами, приведенными в задании. Через намеченные точки проводят тонкие вспомогательные линии (рис. 1.2), облегчающие выполнение графической части задания. На вертикальных осях, предназначенных для окружностей, наносят точки, через которые проводят окружности указанными в задании линиями. Рисунок 1.2

Толщину основной сплошной линии предлагается брать в пределах 0,8…1 мм, а толщины всех остальных линий устанавливают в соответствии с данными табл. 2.1. При выполнении штриховых и штрихпунктирных линий нужно выдерживать их толщину, длину отдельных штрихов и расстояние между ними. Пример выполнения задания 1 на листе 1 показан на рис. 1.2;1..3.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

ИНЖЕНЕРНО-СТРОИТЕЛЬНЫЙ ИНСТИТУТ

Кафедра "Водохозяйственное и гидротехническое строительство "

Дисциплина "Дорожное строительство "

Расчетно-графическая работа по Дорожному строительству

Санкт-Петербург

1.3.4 Видимость пути

Литература

1. Определение требуемых параметров дороги

В соответствии со СНиП 2.05.02-85* категория автомобильной дороги зависит от интенсивности движения по ней. Ожидаемая интенсивность движения в период строительства объекта зависит от количества перевозимых грузов, сроков строительства, марок транспортных средств и определяется по формуле:

Где q - количеств грузов, перевозимых на 1 млн.руб сметной стоимости строительно-монтажных работ, т; принимаются в пределах 8000-10000т;

C - сметная стоимость строительно-монтажных работ по объекту, млн.руб;

Т - срок строительства объекта, годы;

n- число рабочих дней в году;

Kпр - коэффициент использования пробега автомобиля (отношение пробега автомобиля с грузом к его общему пробегу); для условий строительства объекта Кпр=0,5-0,6;

Кгр - коэффициент использования грузоподъемности автомобиля (отношение веса груза на автомобиле к его паспортной грузоподъемности), в практических расчетах назначается Кгр=0,7…0,8);

Г - грузоподъемность автомобиля, т. Примем за расчетный автомобиль КАМАЗ-5510.

По интенсивности движения N в соответствии с приведенной в табл. 1 СНиП 2.05.02-85* классификацией автомобильных дорог определяем категорию дороги.

7349 авт/сутки

Согласно таблице 1 СНиП 2.05.02-85* дорога с расчетной интенсивностью движения 7349 авт/сутки является дорогой II категории областного значения.

1.2 Установление расчетной скорости дороги по СНиП 2.05.02-85*

1.3 Определение параметров дороги

1.3.1 Установление числа полос движения

Число полос движения определяется из сопоставления ожидаемой часовой интенсивности по дороге и пропускной способности одной полосы по формуле:

где Nч - часовая интенсивность движения, авт./час;

Nп - пропускная способность полосы движения, авт./час.

С учетом неравномерности движения в течение суток

авт./час

Пропускная способность полосы движения зависит от скорости движения автомобилей, их марки, типа и состояния покрытия.

В этом случае пропускная способность полосы движения:

Здесь v - расчетная скорость движения, км/ч;

ц - коэффициент сцепления, принимается равным 0,5, что соответствует сухому покрытию;

i - продольный уклон дороги (определяем пропускную способность полосы на горизонтальном участке, т.е. i=0);

f - коэффициент сопротивление качению (табл.1);

Длина автомобиля, м; (расчетный автомобиль КАМАЗ 5510)

Запас расстояния, равный 5-10м;

Кэ - коэффициент эксплуатационного состояния тормозов, равный 1,4.

Таблица 1 - Распределение коэффициентов сопротивления качению

Требуется 2 полосы движения.

1.3.2 Определение ширины проезжей части, полосы движения и земляного полотна

Ширина земляного полотна зависит от ширины полосы движения, количества полос и от ширины обочины.

Значения ширины полосы движения, проезжей части, обочины и земляного полотна запишем в таблицу 3.

1.3.3 Определение наименьших радиусов кривых в плане

Наименьший радиус кривой в плане, при котором возможно применение двускатного профиля при данной расчетной скорости движения определяем по формуле:

При назначении радиусов поворота, меньших Rн, необходимо предусматривать устройство виража. Это наименьшее значение радиуса поворота автомобильной дороги с виражом вычисляется по формуле:

Коэффициент сцепления колеса с дорогой в поперечном направлении, равен 0,1 - 0,15;

Поперечный уклон проезжей части (табл. 2);

Уклон виража (СНиП 2.05.02-85*, п. 4.17).

Таблица 2. - Значения поперечного уклона в зависимости от типа дорожного покрытия

При устройстве виража длина отгона L определяется по выражению:

где b - ширина проезжей части, м;

Дополнительный продольный уклон отгона виража (5‰)

1.3.4 Видимость пути

Для обеспечения безопасности движения с расчетной скоростью водитель должен видеть дорогу на определенном расстоянии, которое равно

где, м - путь, проходимый автомобилем за время реакции водителя, принимаемое равным 1 сек; - длина тормозного пути

= 5- 10 м -- запас расстояния.

На дорогах с одной полосой движения водители автомобилей должны видеть дорогу на еще большем расстоянии. Оно называется расстоянием видимости встречного автомобиля и вычисляется по формуле

Данные расчеты не удовлетворяют требованиям СНиП 2.05.02-85*, поэтому при проектировании дороги будем руководствоваться значениями наименьшего расстояния видимости из табл. 10 СНиП 2.05.02-85*, которые равны 250м и 450м для остановки и встречного автомобиля соответственно.

1.3.5 Определение наименьших радиусов вертикальных кривых

Наименьший радиус выпуклой кривой устанавливается из условия видимости дороги:

где d= 1,2 м -- высота луча зрения водителя над поверхностью дороги.

Наименьший радиус вогнутой кривой определяется из условия ограничения величины центробежной силы:

где v -- расчетная скорость движения, км/час.

Данные расчеты не удовлетворяют требованиям СНиП 2.05.02-85*, поэтому при проектировании дороги будем руководствоваться значениями наименьших радиусов кривых в продольном профиле из табл. 10 СНиП 2.05.02-85*, которые равны 15 000м и 5000м для выпуклых и вогнутых кривых соответственно.

1.3.6 Определение уширения проезжей части на кривых

Величина уширения устанавливается для принятых в проекте радиусов поворота.

При движении по кривой ширина проезжей части, занимаемой автомобилем, увеличивается (рис. 4). Из геометрических соображений уширение одной полосы движения

где L -- расстояние между задней осью и передним бампером расчетного автомобиля (см. П-1 метод. указаний); R -- радиус кривой, принятый в проекте - 800м (согласно табл. 10 СНиП 2.05.02-85*)

Учет зависящих от скорости движения отклонений автомобиля средней траектории производится по эмпирической формуле

Полная величина уширения

При двухполосном движении величина е П в два раза больше согласно п.4.19 СНиП 2.05.02-85*, и в данном случае равна 0,5м

1.3.7 Определение максимального продольного уклона дороги

Максимальный продольный уклон i mах устанавливается по условиям сцепления ведущих колес автомобиля с покрытием при трогании с места и по мощности двигателя по формулам, выведенным из уравнения движения автомобиля и автопоезда.

По условиям сцепления при трогании с места:

-- для одиночных машин

f - коэффициент сопротивления качению, принимается для дорог I и II категории 0,01 - 0,02, III и IV категории - 0,015 - 0,025;

г -- коэффициент сцепного веса -- отношение веса, приходящегося на ведущие оси ко всему весу автомобиля (для грузовых автомобилей г = 0,65-0,75);

ц - коэффициент сцепления колеса с покрытием (ц =0,5);

j -- коэффициент сопротивления инерции,

где а -- ускорение, принимаемое в расчетах равным 0,3--0,5 м/сек2;

g -- ускорение силы тяжести;

Коэффициент, учитывающий инерцию вращающихся частей автомобиля. автомобильный дорога строительство груз

Для грузовых машин

1,0+0,06К = 4,67,

где К - передаточное число в коробке скоростей расчетного автомобиля = 7,82 (табл. П-1 указаний).

При проектировании автомобильной дороги продольный уклон не должен превосходить наименьшего из определенных по формулам. Сравниваем полученный уклон с уклоном из п. 4.20 СНиП 2.05.02-85* и заносим данные в табл. 3 пояснительной записки.

Таблица 3. - Технические параметры автомобильной дороги

Наименование параметров

Значение параметров

по расчету

Принятое в проекте

Основная расчетная скорость движения, км/ч

Не определяется

Число полос движения, шт

Ширина полосы движения, м

Не определяется

Ширина проезжей части, м

Не определяется

Ширина обочины, м

Не определяется

Ширина земполотна, м

Не определяется

Наименьшие радиусы кривых в плане, м:

Без устройства виража

С устройством виража

Не определяется

Расстояния видимости, м:

Поверхности дороги

Встречного автомобиля

Наименьшие радиусы вертикальных кривых, м

Выпуклых

Вогнутых

Величина уширения проезжей части, м

Не нормируется

Наибольший продольный уклон, ‰

Не нормируется

асфальтобетон

асфальтобетон

2. Проектирование продольного профиля земляного полотна, водоотвода

2.1 Проектирование продольного профиля

Продольный профиль содержит линию поверхности земли (черный профиль), рельеф местности по оси дороги, грунтовый и проектную линию (красный профиль). В целом продольный профиль характеризует геологические условия и высотное положение бровки земляного полотна. Высотное положение бровки относительно линии поверхности земли, оцениваемое рабочими отметками, в решающей мере определяет эксплуатационные, прочностные и экономические показатели дороги, а также ее долговечность. Для получения оптимальных результатов при проектировании продольного профиля должны быть обеспечены:

Необходимые условия для движения автомобилей и экономически эффективной работы автотранспорта;

Плавность и безопасность движения автомобилей, достигающих расчетной скорости;

Устойчивость, надежность и долговечность дороги;

Бесперебойное функционирование дороги;

Экономичность строительства дороги.

Необходимые эксплуатационные условия обеспечиваются путем прокладывания проектной линии с пологими продольными уклонами.

СНиП 2-05.02-85* рекомендует применять уклоны до 30%о. При экономической нецелесообразности выполнения этой рекомендации из-за рельефа местности, допускается применять продольные уклоны, не превышающие следующих максимальных значений: при категории дороги категории II - 40%о.

Плавность движения автомобилей достигается вписыванием в переломы проектной линии круговых вертикальных кривых, а безопасность - назначением таких радиусов вертикальных кривых, которые обеспечивают расчетные расстояния видимости (на выпуклых переломах) и ограничивают центробежную силу в пределах 5% от веса автомобиля (на вогнутых переломах). Вертикальные кривые необходимо вписывать в переломы, где алгебраическая разность смежных уклонов Дi равна или превышает на дорогах I-II категории - 5%. Подъемы считаются положительными уклонами, спуски отрицательными. Величина Дi на переломах попутных уклонов (два подъема или спуска) определяется как разность сопрягаемых уклонов, а на переломах встречных уклонов (спуск и подъем, подъем и спуск)- как их сумма.

Наименьшие значения параметров продольного профиля, при которых еще обеспечиваются плавность и безопасность движения автомобилей, приведены в таблице 10 СНиП. В проектах следует стремиться к применению возможно больших значений параметров - это повышает удобство и безопасность движения.

2.2 Требования к проектированию кюветов

На вертикальных кривых кюветы повторяют реальное круговое очертание бровки земляного полотна. Проектирование кюветов производится в такой последовательности:

1. по величинам рабочих отметок устанавливаются места, где необходимо устройство кюветов.

2. задается уклон дна кювета и тип укрепления;

3. на чертеж вчерне наносится линия дна кювета;

4. аналитически определяется расстояние от ближайшего пикета до точек с нулевыми рабочими отметками и до точек пересечения дна кювета с черным профилем (для этого необходимо рассмотреть получившуюся на чертеже геометрическую фигуру: треугольник или трапецию, а так же составить и решить соответствующую пропорцию);

5. указываются проектные отметки дна кювета на всех его переломах, на пикетах и в местах выхода на поверхность;

6. записываются проектные уклоны кюветов;

7. указываются расстояния между переломами и производится привязка к пикетажу точек начала и конца кювета, а также точек с нулевыми отметками;

8. выполняется проверка вычислений (отметки дна кюветов в местах выхода на поверхность должны соответствовать отметкам земли; разность между проектными отметками бровки земляного полотна и проектными отметками дна кювета должна быть равной принятой глубине кювета; кроме того, в соответствии должны находиться указанные расстояния, уклоны и отметки);

9. производится окончательное оформление чертежа и соответствующих граф. Проектные данные, относящиеся к кюветам, проставляются красным цветом.

2.3 Конструкция дорожной одежды

Дорожная одежда является наиболее ответственным элементом, поэтому от правильного ее проектирования зависят как прочность и долговечность, так и общая стоимость дороги. Нежесткими называются одежды, слои которых либо не обладают сопротивлением изгибу, либо обладают им в малой степени. К ним относятся асфальтобетонные, щебеночные (с обработкой или без нее), гравийные, цементогрунтовые, грунтогравийные и подобные им одежды. Проектирование и расчет нежестких одежд производится в соответствии с Инструкцией по проектированию дорожных одежд нежесткого типа ВСН 46-83.

При конструировании нежесткой одежды необходимо:

Учесть назначение дороги, ее категорию, состав и интенсивность движения, удельное давление на покрытие и размер отпечатков пневматиков автомобилей, климатические и грунтово-гидрогеологические условия строительства, наличие дорожно-строительных материалов и их расчетные параметры;

Установить материал основания, а также необходимость введения в конструкцию морозозащитных и дренирующих слоев;

Принять минимальную толщину конструктивных слоев по технологическим требованиям.

Проектирование нежестких одежд заключается в:

1. В выборе материалов конструктивных слоев,

2. Назначении числа этих слоев,

3. Размещении их в конструкции,

4. Определение толщины каждого слоя на основе прочностных расчетов,

5. Расчетов на морозоустойчивость.

Из табл. 25 СНиП выбираем усовершенствованное капитальное покрытие из асфальтобетонной смеси, укладываемое в теплом состоянии. Из методических указаний рис.24 выбираем асфальтобетонное покрытие на щебеночном основании.

Конструкция дорожной одежды

3. Гидравлический расчет водопропускных сооружений

3.1 Гидравлический расчет трубы

Гидравлический расчет трубы включает в себя определение:

Диаметра трубы и типа укрепления русла;

Высоты подпора воды и высоты насыпи над трубой;

Длины трубы.

Расчет безнапорных труб производится по табл. П-15, которая составлена из условия, что трубы имеют уклоны, не менее критического i кр. Практически трубы укладываются по уклону местности. Так как он меньше критического более чем в 2 раза, то надо увеличить подпор Н , полученный по таблице, на величину:

22,3*(0,006-0)=0,13 м

где l -- длина трубы, м; i 0 -- уклон трубы.

По заданному расчетному расходу для определения диаметра трубы Qр=2,4 м3/с и типу оголовка I по табл. П-15 методических указаний определяем высоту напора воды перед трубой Н , скорость протекания воды в трубе v и диаметр трубы d .

H =1,27м, v =2,47м/с при d =1,5м, оголовок трубы раструбный .

По скорости протекания воды (Табл.П-16 методических указаний) назначаем укрепление русла типа каменной наброски из булыжного или рваного камня .

Для определения высоты насыпи над трубой Н нас следует руководствоваться указанием СНиП 2.05.03.84* табл. 1.

Кроме того, высота насыпи должна обеспечивать размещение над трубой дорожной одежды.

H нас = d + h до + 0,5=1,5+0,68+0,5=2,68 м.

Примерная длина трубы может быть определена по выражению:

l = B + 2mH нас=15+2*1,5*2,68=23,04м,

где B - ширина земляного полотна, м; m - коэффициент крутизны откоса насыпи, равный 1,5.

Из таблицы П-17 находим:

Толщину звена = 0,14м,

Длину оголовка = 2,74м.

3.2 Расчет отверстия малого моста

Расчет отверстия малого моста ведется в такой последовательности:

Определяется бытовая глубина протекания воды в нестесненном русле водотока;

Устанавливается схема протекания воды под мостом;

Определяется величина отверстия моста;

Уточняются расчетные данные применительно к типовым размерам малых мостов.

3.2.1 Определение бытовой глубины

Принимаются к расчету следующие данные: расчетный расход Q р = 15,0 м 3 /с; i 1 = 0,100; i 2 = 0,060; уклон русла i р = 0,007; задаем h б =0,95 м. Определяем площадь живого сечения, смоченный периметр р и гидравлический радиус R:

где - уклон русла.

где - русловой коэффициент, устанавливаемый по табл.; y=0,25 - показатель степени. Зная площадь сечения и скорость в бытовых условиях, находим расход:

Полученный расход Q сравниваем с расчетным Q p . При отличии Q от Q p менее 10% принимаем назначенную бытовую глубину и скорость за действительные:

Полученный расход отличается от расчетного на 3,6%.

3.2.2 Установление схемы протекания воды под мостом

Для установления схемы протекания воды под мостом необходимо знать критическую глубину потока:

где - скорость потока, при которой не размывается грунт или укрепление русла - каменная наброска из булыжного камня;

g=9,8 - ускорение силы тяжести.

Так как, то истечение свободное и водослив незатопленный.

3.2.3 Определение величины отверстия моста

При свободном истечении отверстие моста на уровне свободной поверхности определяют по формуле:

где =0,9 - коэффициент сжатия потока, зависящий от формы устоев.

Полученную величину округляем до типового размера.

3.2.4 Уточнение расчетных данных

Определим фактическую скорость под мостом:

Определим глубину потока под мостом:

Глубина потока перед сооружением:

где - коэффициент скорости, зависящий от формы опор.

3.2.5 Определение высоты и длины моста

Наименьшая высота моста находится по выражению:

где Z=0,75 - наименьшее возвышение низа пролетного строения над ГВВ;

K=0,96 - конструктивная высота моста.

Длину моста находим по формуле:

где B = 7,5 - отверстие моста; m = 1,5 - коэффициент крутизны откоса насыпи; = 3,0 - высота моста; d = 0 - ширина промежуточной опоры; p = 0,1 - расстояние от передней грани устоя до основании насыпи; q = 0,3 - расстояние от задней грани устоя до вершины откоса насыпи.

Литература

СНиП 2.05.02-85* Автомобильные дороги.

1. Методические указания по выполнению расчетно-графической работы "Дорожное строительство " (для студентов инженерно-строительного института заочной формы обучения).

2. В.Г. Попов, Строительство автомобильных дорог. Пособие для мастеров и производителей работ дорожных организаций, Москва 2001.

Размещено на Allbest.ru

Подобные документы

    Основы тягового расчета движения автомобилей. Расчет отгона виража и составной кривой. Обоснование ширины проезжей части, земляного полотна и технической категории автомобильной дороги. Пропускная способность полосы движения и загрузка дороги движением.

    курсовая работа , добавлен 02.06.2009

    Проектирование плана пути железной дороги на перегонах. Определение ширины проезжей части, полосы движения и земляного полотна. Конструкция дорожной одежды. Расчет числа путей в районном парке и количества парков. Расчет водопропускных сооружений.

    курсовая работа , добавлен 12.03.2013

    Определение основных технических нормативов проектируемой автомобильной дороги. Проектирование кюветов и закругления с симметричными переходными кривыми. Нанесение геологического профиля. Расчет проектной линии, ширины проезжей части и земляного полотна.

    курсовая работа , добавлен 23.02.2016

    Общие вопросы проектирования и технологии строительства земляного полотна, условия производства работ. Составление дорожно-климатического графика. Разработка проекта возведения земляного полотна для автомобильной дороги III категории протяженностью 10 км.

    курсовая работа , добавлен 09.11.2013

    Расчет пропускной способности дороги и коэффициента загрузки движения: интенсивность движения, направление движения пешеходов и автомобилей. Анализ дорожных условий, схема перекрёстка, тип пересечения. Ширина пешеходного тротуара и проезжей части дороги.

    курсовая работа , добавлен 22.11.2009

    Характеристика природных условий района проектирования дороги. Определение продольных уклонов, ширины проезжей части и земляного полотна. Варианты проложения трассы дороги в обход сложных участков рельефа. Проектирование дороги в продольном профиле.

    курсовая работа , добавлен 04.04.2012

    Исследование параметров дорожного движения, необходимость светофорного регулирования. Определение необходимого количества полос движения и ширины проезжей части дороги и пешеходных переходов. Расчёт режимов светофорной сигнализации по методике Вебстера.

    курсовая работа , добавлен 16.09.2017

    Проектирование светофорного регулирования на изолированном перекрестке. Определение расчетной интенсивности движения. Определение ширины проезжей части. Выбор оптимальной схемы пофазного разъезда. Построение графика работы светофорной сигнализации.

    курсовая работа , добавлен 18.12.2010

    Общие данные для проектирования автомобильной дороги. Разработка вариантов трассы на карте. Земляное полотно и дорожная одежда. Обустройство дороги, организация и безопасность движения. Определение нормативов перспективной интенсивности движения.

    курсовая работа , добавлен 29.09.2009

    Анализ экономических и климатических факторов в районе проложения автомобильной дороги. Анализ дорожных условий и выделение сложных для организации движения участков дороги. Характеристика транспортного потока, оценка безопасности движения на дороге.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по выполнению контрольных заданий

по дисциплине

ОП.01«Инженерная графика»

для специальности 23.02.03

Техническое обслуживание и ремонт автомобильного транспорта

для заочной формы обучения

(базовая подготовка)

Рассмотрено на заседании ЦМК

Технико-экономического направления

Протокол №__ от «___» ______2015г.

Председатель ЦМК

О.В.Кобелева

Методическое пособие по «Инженерной графике» для специальности

23.02.03 Техническое обслуживание и ремонт автомобильного транспорта для заочной формы обучения

Организация-разработчик:

Государственное образовательное учреждение среднего профессионального образования Кемеровский профессионально-технический техникум.

Казанникова Валентина Григорьевна , преподаватель высшей квалификационной категории ГОУ СПО Кемеровского профессионально-технического техникума.

Рецензенты:

Шартынова Евгения Сергеевна , преподаватель инженерной графики высшей квалификационной категории Кемеровского профессионально-технического техникума

Машкина Валентина Владимировна , преподаватель инженерной графики высшей квалификационной категории Кемеровского коммунально-строительного техникума имени В.И.Заузелкова

Введение
Содержание учебного материала дисциплины
Общие методические указания
Графические работы
Графическая работа № 1Титульный лист альбома графических работ
Графическая работа № 2 Построение сопряжений, уклона, конусности
Графическая работа № 3 Комплексные чертежи и аксонометрические изображения геометрических тел с нахождением проекций точек, принадлежащих поверхности тела
Графическая работа № 4 Построение третьей проекции модели по двум заданным. Аксонометрическая проекция
Графическая работа № 5 По двум данным видам модели построить третий вид, необходимые разрезы, аксонометрическую проекцию с вырезом передней четверти
Графическая работа № 6 Выполнение эскиза детали с резьбой с применением простого или сложного разреза
Графическая работа № 7 Выполнение резьбовых соединений деталей при помощи болта и шпильки
Графическая работа № 8 Выполнение чертежа цилиндрической зубчатой передачи со шпоночным соединением вала и колес
Графическая работа № 9 Выполнение эскизов деталей сборочной единицы, состоящей из пяти, шести деталей
Информационное обеспечение
Приложение


ВВЕДЕНИЕ

Учебная дисциплина «Инженерная графика» является общепрофессиональной, формирующей базовые знания, необходимые для освоения специальных дисциплин: умение читать и выполнять чертежи деталей, сборочные чертежи, чертежи схем.

Методические указания по выполнению контрольных заданий составлены в соответствии с рабочей программой дисциплины ОП.01 «Инженерная графика» по специальности 23.02.03 Техническое обслуживание и ремонт автомобильного транспорта для заочной формы обучения, которая предусматривает самостоятельное изучение студентом теоретических основ и выполнение ряда контрольных заданий, чтобы выработать навыки чертежной работы. Выполнение графических работ помогает овладеть техникой черчения, развивать пространственное мышление, без которого невозможна активная творческая работа студентов при выполнении курсовых, дипломных работ и при дальнейшей работе по специальности.

В результате освоения дисциплины студент должен уметь:

Оформлять проектно-конструкторскую, технологическую и другую техническую документацию в соответствии с действующей нормативной базой;

Выполнять изображения, разрезы и сечения на чертежах;

Выполнять деталирование сборочного чертежа;

Решать графические задачи.

В результате освоения дисциплины студент должен знать:

Основные правила построения чертежей и схем;

Способы графического представления пространственных образов;

Возможности пакетов прикладных программ компьютерной графики в профессиональной деятельности;

Основные положения конструкторской, технологической и другой нормативной документации;

Основы строительной графики.

Методические указания включают содержание учебного материала дисциплины для самостоятельного изучения теоретического материала с указанием ссылки на учебную литературу и тематику контрольных работ, методические указания и задания к графическим работам, которые студент выполняет под руководством преподавателя на уроках практического цикла и самостоятельно при подготовке контрольной работы.

В состав каждого практического задания пособия входят методические указания, где оказывается методическая помощь при выполнении задания, для каждой работы приведены образцы оформления чертежа. Все варианты заданий выполнены в одном стиле, подбор заданий охватывает материал основных разделов программы, что позволяет объективно оценивать знания, приобретенные студентами при изучении дисциплины «Инженерная графика». Описание порядка выполнения задания облегчает и ускоряет процесс его выполнения.

Под заголовком «Об­ратите внимание» в методических указаниях сообщается, какие именно произош­ли изменения в стандарте и важное при выполнении чертежа.

В приложении включены необходимые для выполнения графических работ справочные материалы.

Итоговая оценка выводится по результатам проверки каждой графической работы, критериями оценивания которых являются следующие показатели:

Выбор масштаба и расположение формата чертежа;

Компоновка чертежа;

– правильность выполнения задания;

Простановка размеров;

– линии чертежа;

Заполнение основной надписи.

Темы раздела, занятий Кол.-во часов Литература
Раздел 1. Изучение геометрического черчения
Тема 1.1.Основные сведения по оформлению чертежей Форматы чертежей - основные и дополнительные. Линии чертежа - начертание, название, назначение, толщина. Рамка и основная надпись. Масштабы - определение, обозначение и применение.
Тема 1.2.Чертежный шрифт и выполнение надписей на чертежах. Сведения о стандартных шрифтах, размерах и конструкций букв и цифр. Правила выполнения надписей на чертежах. Графическая работа № 1Титульный лист альбома графических работ студента
Тема 1.3.Основные правила нанесения размеров Правила нанесения размеров. Линейные и угловые размеры. Стрелки. Правила нанесения выносных и размерных линий и размерных чисел. Знаки применяемые при нанесении размеров.
Тема 1.4.Геометрические построения и приемы вычерчивания контуров технических деталей. Деление окружности на равные части. Сопряжения, применяемые в контурах технических деталей. Сопряжения дуг с дугами, дуги с отрезком прямой, прямой с прямой. Уклон и конусность на технических деталях: определение, правила построения по заданной величине и обозначение. Графическая работа № 2Построение сопряжений, уклона, конусности
Раздел 2. Изучение проекционного черчения (основы начертательной геометрии)
Тема 2.1.Проецирование точки Методы проецирования. Плоскости и оси проекции. Проецирование точки на две и три плоскости проекции. Координаты точки. Чтение чертежа точек.
Тема 2.2.Проецирование отрезка прямой Расположение отрезка прямой линии относительно плоскостей проекции. Проецирование отрезка прямой линии на две и на три плоскости проекции.Чтение чертежей отрезка прямой.
Тема 2.3.Проецирование плоскости Изображение плоскости на комплексном чертеже. Плоскости общего и частного положения. Проекции точек и прямых, расположенных на плоскости. Чтение чертежей плоскости.
Тема 2.4. Аксонометрические проекции Виды аксонометрических проекций. Аксонометрические оси. Показатели искажения. Изображения в аксонометрических проекциях плоских фигур и объемных тел.Выполнение изображений плоских фигур и объемных тел.
Тема 2.5.Проецирование геометрических тел Определение поверхностей тел. Проецирование геометрических тел (призмы, конуса, цилиндра, пирамиды) на три плоскости проекций с подробным анализом проекций элементов геометрических тел (вершин, ребер, граней, осей и образующих). Построение проекций точек, принадлежащих поверхностям геометрических тел. Графическая работа № 3 Комплексные чертежи и аксонометрические изображения геометрических тел с нахождением проекций точек, принадлежащих поверхности тела.
Тема 2.6.Сечение геометрических тел проецирующими плоскостями. Понятие о сечении. Сечение тел проецирующими плоскостями. Нахождение действительной величины отрезка и плоской фигуры способами вращения, совмещения и перемены плоскостей проекций. Построение натуральной величины фигуры сечения. Построение разверток поверхностей усеченных тел. Изображение усеченных геометрических тел в аксонометрических проекциях Комплексные чертежи усеченного многогранника или усеченного тела вращения; развертка поверхности усеченных тел; аксонометрия усеченных тел
Тема 2.7.Взаимное пересечение поверхностей те л Общие сведения о линии пересечения поверхностей геометрических тел.Способы нахождения точек линии пересечения. Комплексный чертеж и аксонометрия пересекающихся геометрических тел.
Тема 2.8.Проекции моделей Последовательность построения чертежей моделей в системе прямоугольных проекций. Выполнение комплексных чертежей моделей по натуральным образцам Графическая работа № 4Построение третьей проекции модели по двум заданным. Аксонометрическая проекция
Раздел 3. Изучение машиностроительного черчения
Тема 3.1.Изображения на машиностроительных чертежах. Виды – определения, назначение, расположение и обозначение основных местных и дополнительных видов. Разрезы – образование, назначение, расположение и обозначение. Местные разрезы. Соединение половины вида с половиной разреза. Сечения вынесенные и наложенные. Обозначения и надписи. Графическое обозначение материалов в сечениях и разрезах Графическая работа № 5По двум данным видам модели построить третий вид, необходимые разрезы, аксонометрическую проекцию с вырезом передней четверти
Тема 3.2.Резьба, резьбовые изделия Основные сведения о резьбе. Классификация резьб. Параметры резьбы. Элементы резьбы: сбеги, недорезы, проточки, фаски. Условное изображение и обозначение резьбы Изображение стандартных резьбовых крепежных деталей по их действительным размерам согласно ГОСТ (болты, шпильки, гайки, шайбы).Изображение и обозначение резьбы на чертежах
Тема 3.3.Эскизы и рабочие чертежи деталей Форма детали и ее элементы. Измерительные инструменты и приемы измерения деталей. Понятие о нанесении на чертеже обозначений шероховатости поверхностей, материала, применяемого для изготовления деталей. Назначение и порядок выполнения эскиза деталей. Рабочий чертеж детали. Чтение рабочих чертежей. Графическая работа № 6Выполнение эскиза детали с резьбой с применением простого или сложного разреза
Тема 3.4.Разъемные и неразъемные соединения деталей. Виды разъемных соединений: резьбовые, шпоночные, зубчатые и т.д. Их назначение. Изображение соединений с помощью болтов, шпилек, винтов. Виды неразъемных соединений деталей. Условное изображение и обозначение сварных швов на чертежах. Выполнение чертежа сварного соединения деталей Графическая работа № 7Выполнение резьбовых соединений деталей при помощи болта и шпильки
Тема 3.5.Зубчатые передачи. Основные виды передач. Конструктивные разновидности зубчатых колес.Расчет и порядок выполнения чертежа зубчатой передачи. Графическая работа № 8Выполнение чертежа цилиндрической зубчатой передачи со шпоночным соединением вала и колес.
Тема 3.6. Общие сведения об изделиях и составлении сборочных чертежей. Чертеж общего вида, его назначение и содержание. Последова - тельность выполнения сборочного чертежа.Выполнение эскизов деталей сборочной единицы. Увязка сопрягаемых размеров. Порядок выполнения сборочного чертежа по эскизам деталей. Выбор числа изображений. Выбор формата. Размеры на сбороч-ных чертежах. Штриховка на разрезах и сечениях. Упрощения, применяемые на сборочных чертежах. Спецификация, ее назначе-ние и порядок заполнения. Нанесение номеров позиций на сборочном чертеже. Графическая работа № 9Выполнить эскизы деталей сборочной единицы, состоящей из пяти, шести деталей.
Тема 3.7.Чтение и деталирование сборочных чертежей. Назначение и работа сборочной единицы. Количество стандартных и нестандартных деталей, входящих в сборочную единицу. Чтение сборочных чертежей.
Раздел 4. Машинная графика
Тема 4.1Общие сведения о системе автоматизированного проектирования
Раздел 5. Изучение схем по специальности Тема 5.1Чтение схем Типы и виды схем. Условные графические обозначения элементов схем на чертежах. Правила выполнения схем в соответствии с требованиями ЕСКД. Чтение схем. Выполнение графической работы и чертежей
Раздел 6. Изучение элементов строительного черчения
Тема 6.1Общие сведения о строительном черчении Виды строительных чертежей. Изображения на строительных чертежах. Разбивочная сетка осей. Нанесение размеров на строительных чертежах. Выполнение графической работы: Выполнение плана цеха
Всего

ОБЩИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Как показывает практика, наибольший эффект изучения инженерной графики может быть достигнут при выполнении студентами индивидуальных графических заданий, которые представлены в настоящих методических указаниях вариантами заданий. Вариант выбирается по номеру в списке классного журнала.. Все задачи решаются после самостоятельного изучения соответствующего раздела по учебнику. Ссылка на учебную литературу дается в разделе 2 данного пособия, где указаны изучаемые темы, их содержание и приведены страницы по имеющимся в библиотеке техникума учебникам, ниже список литературы приведен дополнительно.

Графические задания выполняются на стандартных листах чертежной бумаги, в карандаше. Каждый лист оформляется рамкой и заверяется основной надписью формы 1 по ГОСТ 2.104-2006 (см. приложение 11). Образец ее заполнения показан на рис. 1. В дополнительной графе размером 14х70, которую располагают в верхнем углу вдоль длинной стороны формата, указывают код чертежа в перевернутом расположении.

В коде указывают адрес изготовителя чертежа и записывают его шрифтом № 7:

КПТТ – Кемеровский профессионально - технический техникум; наименование дисциплины: ИГ - инженерная графика; номер варианта: 05- пятый вариант; номер графической работы: 10 - графическая работа № 10.

Например: КПТТ ИГ 05.10.00

Для некоторых листов вместо последних нулей указывают номер позиции детали, код схемы и т. д.

В основной надписи в графе «наименование» пишется название графической работы. Масштаб изображения указывают в основной надписи.

Для простановки размеров на чертежах используют шрифт № 3,5.

Принятые обозначения:

Точки на проекциях обозначаются одноименными строчными буквами русского алфавита со штрихами, обозначающими плоскость проекции (а, а", а");

Углы - строчными буквами греческого алфавита, с указанием градуса (α, β).

Все текстовые надписи на чертежах выполняют чертежным шрифтом по ГОСТ 2.304-81, для удобства использования настоящего пособия в приложении № 2 приведена конструкция букв и размеры для номеров шрифта 3,5; 5; 7 и 10. По завершении выполнения всех графических заданий листы брошюруют в альбом, первым листом которого является титульный лист (его номер на листе не указывается). Альбом представляется на рецензию преподавателю.

ГРАФИЧЕСКИЕ РАБОТЫ

ГРАФИЧЕСКАЯ РАБОТА № 1

Т Г Т У

П.А. Острожков, М.А.Кузнецов, С.И. Лазарев
для студентов ВУЗов, обучающихся по направлениям техники
и технологии

Графическая работа № 1
Графическая работа № 2
Графическая работа № 3
Проверочный
тест
Приложение

Графическая работа № 1
Взаимное положение двух плоскостей.
Цель работы: закрепление знаний при
позиционных задач.
Задача
Задача №
№ 11
решении
Задача
Задача №
№ 22

Задача № 1
1. В плоскости, заданной тремя точками
А,В,С (координаты точек смотри в
приложении) построить треугольник,
образованный горизонталью, фронталью и
профильной прямой. Начертить
полученный треугольник в натуральную
величину.
2. Построить плоскость, параллельную
заданной и отстоящую от нее на
расстоянии 50 мм.

формата А3
(290х420 мм)
меню

Размечаем мысленно лист на 2 части

В левой части листа формата А3 намечаем оси координат.
z
x
0
y

Согласно координатам индивидуального задания отмечаем точки А, В и С –
вершины ∆ АВС в координатных плоскостях.
B”
A”
z
C”
x
0
B’
A’
C’
y

Соединяем точки отрезками, образуем плоскость ∆ АВС, соответственно в
проекциях.
B”
A”
z
C”
x
0
B’
A’
C’
y

Проводим проекцию горизонтали D”P” во фронтальной плоскости
(параллельно оси Х) и проецируем ее в горизонтальную плоскость
проекций.
B”
z
D”
P”
A”
C”
x
B’
0
D’
A’
P’
C’
y

Проводим в горизонтальной плоскости проекции фронталь D’E’, затем
проводим профильную прямую. Образуем DEF, в котором с помощью
способа прямоугольного треугольника находим натуральную величину
катета EF.
B”
z
Е”
D”
A”
F”
P”
C”
x
0
B’
D’
A’
E*
Е’
F’ P’
C’
y

Строим натуральную величину DEF, образованного прямыми частного
положения.
B”
z
Е”
D”
A”
F”
P”
C”
x
0
B’
E”
D’
A’
Е’
F’ P’
C’
F
D
нв
E
y

Построение плоскости параллельно данной и удаленной от нее на 50 мм.
Продляем горизонтальную проекцию горизонтали (DF) И фронтальную проекцию
фронтали (DE), затем к этим прямым восстанавливаем перпендикуляр из т. А и на этом
перпендикуляре произвольным образом отмечаем т. К
B”
z
K”
Здесь мы применили теорему о
проецировании прямого угла
Е”
D”
A”
F”
P”
C”
x
0
B’
E”
D’
A’
F” P’
C’ y
K’
E
нв
D
Е’
F

Замеряем разность расстояний между точками К и А (отрезок КL) и откладываем его на
перпендикуляре опущенным в точку K” ,образуя т. К*.
B”
S”
S*
K”
K*
50
мм
D”
A”
x
Соединив между собой т. А и т. К* мы получим
z натуральную отрезка АК, продлив этот отрезок
отложим на нем отрезок равный 50 мм и отметим
Е”
т. S*.
Из т. S* проведем прямую параллельную отрезку
P”
К*К” до пересечения с первоначальным
F”
перпендикуляром (А”K”) , образовав т.S” .
C”
Из т. S проводим плоскость параллельную данной.
Для этого в т.S пересекаем две прямые, параллельно
0 двум любым прямым заданной плоскости.
B’
E”
D’
A’
L”
F” P’
C’ y
K’
S’
E
нв
D
Е’
F

Задача №2
Согласно координатам индивидуального варианта задания(см. приложение) отмечаем
точки А,В,С и D,E,F.
Соединив их отрезками получим треугольники АВС и DEF, соответственно в проекциях.
D”
B”
Z
E”
C”
A”
F”
X
0
B’
F’
E’
C’
A’
D’
У

Отмечаем в горизонтальной плоскости проекции т.1 и т.2, точки пересечения стороны А’В’
(АВС) соответственно со сторонами E’F’ и D’E’ DEF.
Проецируем т.1 и т.2 во фронтальную плоскость проекции на соответствующие прямые и
соединяем отрезком т.1 и т.2 между собой.
На пересечении прямой А”B” и отрезка 1”2” образуем т.К”, затем проецируем ее в
горизонтальную плоскость проекции на соответствующую прямую.
1”
E”
D”
B”
Z
K”
C”
2”
A”
F”
X
0
B’
2’
E’
K’
F’
C’
1’
A’
D’
У

Во фронтальной плоскости проекции отмечаем т.3 и т.4, точки пересечения сторон А”В” и
А”С” (АВС) со стороной D”F” (DEF).
Проецируем т.3 и т.4 в горизонтальную плоскость проекции на соответствующие стороны
треугольника, соединяем их между собой отрезком.
На пересечении отрезка 3’ 4’ со стороной D’F’, образуем т. L .
Проецируем т.L во фронтальную плоскость проекции на соответствующую сторону (D”F”).
D”
3”
1”
Соединив т.К и т.L между собой,получим
искомую линию KL - линию пересечения
плоскостей, заданных треугольниками.
E”
B”
Z
K”
L”
2”
C”
4”
A”
F”
X
0
B’
2’
E’
F’
3’
K’
L’
C’
4’
1’
A’
D’
У

Методом конкурирующей точки определяем видимость плоскостей, заданных
треугольниками АВС и DEF.
B”
S”
z
D”
3”
1”
S*
K”
K*
50
мм
Е”
E”
B”
K”
L”
2”
D”
A”
F”
Z
P”
C”
4” (6”)
5”
A”
F”
C”
x
0
X
B’
0
B’
E”
D’
A’
L”
Е’
F” P’
C’ y
K’
S’
2’
E’
6’
3’
K’
L’
(5’) 1’
F’
C’
4’
A’
E
У
D’
нв
D
F
меню

Графическая работа №2

Способы преобразования чертежа
Цель работы: закрепление знаний и основных
приемов при решении метрических задач.

Условие задачи.
Дана пирамида SABCD с основанием АВСD (координаты
точек смотри в приложении) расположенным в
плоскости общего положения.
Требуется:
1.Методом вращения вокруг линии уровня определить
натуральную величину основания АВСD.
2.Методом плоско-параллельного перемещения
определить расстояние от вершины S до плоскости
основания АВСD.
3. Методом перемены плоскостей проекции определить
истинную величину двугранного угла при ребре ВC,
образованного основанием и боковой гранью
пирамиды.

Для выполнения данной графической работы используется лист
формата А3 (290х420 мм)

Оформляется рамкой, угловым штампом и заполнением основной надписи.

Z
B”
D”
L”
C”
S”
X
A”
0
S’
B’
D’
L’
C’
A’
У
Согласно индивидуального задания
отмечаем по координатам точки
S,А,В,С и D“,недостающую
координату т. D’ - определяем
построением.
Соединяем точки отрезками,
образуем плоскость основания
пирамиды ABCD.

Z
B”
L”
D”
C”
S”
H”
X
0
A”
S’
B’
D*
D’
RD
L’
C’
O’1
A’
ось вращ
.
H’
D
У
Задаемся осью вращения (линия
уровня-AH).
В горизонтальной плоскости
проекции из точки D’ опускаем
перпендикуляр на ось вращения
A’H’, на их пересечении образуем
центр вращения (т.О’1)
соответствующей точки D” .
Методом прямоугольного
треугольника получаем
натуральную величину радиуса
вращения точки D.
Вращаем т.D до пересечения с
перпендикуляром, на их
пересечении образуем т. D

Z
B”
L”
D”
C”
S”
H”
X
0
A”
S’
B’
D*
D’
RD
L’
B*
RB
C’
O’1
A’
O’2
O’3
H’
D
B
У

из точки В’ опускаем перпендикуляр
на ось вращения A’H’ , на их
пересечении образуем центр
вращения (т. О’2) соответствующей
точки В.
Методом прямоугольного
треугольника получаем натуральную
величину радиуса вращения точки В.
Вращаем т.В до пересечения с

образуем т.В

Z
B”
L”
D”
C”
S”
H”
X
0
A”
S’
B’
D*
D’
RD
L’
B*
RB
C’
O’1
C*
RC
A’
O’2
O’3
H’
C
D
B
У
В горизонтальной плоскости проекции
из точки С’ опускаем перпендикуляр на
ось вращения A’H’, на их пересечении
образуем центр вращения
(т.О’3)соответствующей точки С.
Методом прямоугольного треугольника
получаем натуральную величину
радиуса вращения точки С.
Вращаем т.C до пересечения с
перпендикуляром, на их пересечении
образуем т.С.
Точку А не вращаем, так как она лежит
на оси вращения.

Z
B”
L”
D”
C”
S”
H”
X
0
A”
S’
B’
D*
D’
RD
L’
B*
RB
C’
O’1
C*
RC
A’
O’2
НВ
D
B
O’3
H’
C
У
Соединяем образованные точки
отрезками, получаем
натуральную величину
основания пирамиды АВСD.

Z
B”
L”
D”
C”
S”
A” H”
H”
X
0
A”
S’
B’
D*
D’
R1
RB
R2
C’
A’
O’2
R3
RC
O’3
RC
RC
C*
H’
B’
НВ
D
B
RC
C’
RB
L’
RB
O’1
B*
C
RB
A’ H’
У
Приводим плоскость АВС в
положение проецирующей
плоскости, т.е. перпендикулярной
плоскости проекции. Для получения
фронтально-проецирующей
плоскости необходимо горизонталь
АH плоскости вместе с системой
всех точек плоскости (АВС)
поставить в положение,
перпендикулярное фронтальной
плоскости проекций.

Z
Переносим т.S – вершину пирамиды.
B”
L”
D”
C”
S”
A” H”
H”
X
0
A”
S’
B’
D*
D’ RS
R1
O’1
B*
RS
L’
A’
R2
RS
C’
C’
RS
C*
R3
O’2
O’3
H’
B’
НВ
D
C
RS
A’ H’
S’
B
У

Z
B”
B”
K”
L”
D”
C”
C”
S”
H”
S”
X
A” H”
0
A”
S’
B’
D*
D’
R1
L’
B*
R2
C’
O’1
A’
C’
C*
R3
O’2
O’3
H’
B’
НВ
D
C
A’ H’
S’
B
S” K” = 32 мм
K’
У
По перемещенной горизонтальной
проекции A’В’С’ и его исходной
фронтальной проекции строим
новую фронтальную проекцию АВС
и точки S. Определяем расстояние
от т.S до заданной плоскости. Оно
равно отрезку перпендикуляра SK,
опущенного из т.S на плоскость
выродившуюся на новой
фронтально-проецирующей
плоскости проекций в прямую
линию.
Получив основание перпендикуляра
SK, строим его горизонтальную
проекцию на исходном чертеже
задачи.

Z
B”
B”
K”
L”
D”
C”
Двугранный угол измеряется
линейным углом, составленным
линиями пересечения граней
двугранного угла с плоскостью,
перпендикулярной к его ребру.
C”
S”
H”
S”
X
A” H”
0
A”
S’
B’
D*
D’
RD
L’
B*
B”
RB
C’
O’1
C’
C*
RC
A’
O’2
O’3
H’
B’
НВ
D
X
C
A’ H’
S’
B
S” K” = 32 мм
C”
S”
K’
П2
П1
0
A”
S"
B’
У
C’
A’

Z
B”
B”
K”
L”
D”
C”
C”
S”
H”
S”
X
A” H”
0
A”
S’
B’
D*
D’
RD
L’
B*
BIV
RB
RC
A’
C’
SIV
C’
O’1
При применении способа замены плоскостей
нужно иметь в виду, что фигура не меняет
своего положения в пространстве, плоскость же
проекций П1 заменяем новой плоскостью,
соответственно П4. При построении проекций
фигуры на новой плоскости проекций
необходимо помнить, что происходит переход от
одного изображения к другому, на котором
соответственные проекции точек также
расположены на линиях связи. Координаты
точки на новой плоскости проекций равна
координате точки на заменяемой плоскости
AIV
проекций.
O’2
O’3
CIV
C*
B”
H’
B’
НВ
D
C
A’ H’
S’
K’
X
B
S” K” = 32 мм
У
П4
C”
S”
П2
П2
A”
П1
0
S"
B’
C’
A’

Z
B”
B”
K”
L”
D”
C”
Для того чтобы линейный угол
спроецировался на плоскость проекций в
натуральную величину, надо новую
плоскость проекций П5 поставить
перпендикулярно к ребру ВС двугранного
угла.A
V
П5 П4
C”
S”
H”
S”
X
0
A”
AIV
A” H”
SV
BV C V
S’
SIV
B’
D*
D’
RD
L’
CIV
B*
C’
B”
RB
C’
O’1
C*
=40°
RC
A’
O’2
O’3
H’
D
X
C
A’ H’
S’
B
S” K” = 32 мм
K’
П4
C”
S”
B’
НВ
BIV
П2
П2
П1
0
A”
S"
B’
У
C’
A’
меню

Графическая работа №3 лист 1
Пересечение поверхности плоскостью.

навыков в решении позиционных задач на поверхности
и построении разверток поверхностей.

Условие задачи.
1.Построить проекции сечения правильной пирамиды
плоскостью общего положения заданной тремя точками
А,В,С (координаты точек смотри в приложении). Центр
окружности описанной вокруг основания пирамиды
расположен в точке К с координатами (70,60,0).
2.Построить полную развертку усеченной пирамиды по
условию предыдущей задачи.

Для выполнения данной графической работы используется лист формата
А3 (290х420 мм)

Оформляется рамкой, угловым штампом и заполнением основной надписи

Z
S”
B”
А”
C”
П1
D”
F”
E”
0
П2
А’
D’
У
B’
S’
F’
K’
E’
C’
В левой половине листа формата А3 намечаются оси
координат, согласно своему варианту берутся
величины, которыми задаются поверхность пирамиды
и плоскость АВС (см. приложение). Определяется
центр(точка К) окружности радиусом R основания
пирамиды в плоскости уровня. На вертикальной оси
на расстоянии Н от плоскости уровня и выше ее,
определяется вершина пирамиды.

Z
S”
B”
А”
C”
П1
D”
F”
E”
0
П2
А’
D’
У
B’
S’
F’
K’
E’
C’
По координатам точек А, В, С определяется
секущая плоскость.

Z
S”
B”
А”
В целях облегчения построения линии сечения
строится дополнительный чертеж заданных
геометрических образов.
Выбирается дополнительная система П1/П4 плоскостей
проекций с таким расчетом, чтобы секущая плоскость
была представлена как проецирующая.
Дополнительная плоскость проекций П4
перпендикулярна заданной плоскости АВС.
AIV BIV
П1
C”
П1
D”
F”
П4
E”
0
П2
DIV
А’
SIV
D’
У
B’
KIV
FIV
S’
F’
K’
EIV
E’
C’
CIV

Z
S”
B”
А”
Линия сечения проецируется на плоскость
проекции П4 в виде отрезка прямой на следе
этой плоскости. Имея проекцию сечения на
дополнительной плоскости П4 строят основные
ее проекции.
L”
N”
C”
П1
D”
F”
П1
M”
AIV BIV
П4
E”
0
П2
DIV
LIV
А’
D’
SIV
У
B’
L’
NIV
KIV
FIV
S’
N’
MIV
K’
E
IV
M’
F’
E’
C’
CIV

Z
S”
B”
А”
L”
L”
N”
N”
M
C”
П1
В правой половине листа строят полную развертку
пирамиды.
На фронтальной проекции определяют натуральную
величину ребра пирамиды.
Сносим характерные точки сечения пирамиды на
натуральную величину ребра.

D”
F”
M”
П1
AIV BIV
П4
E” E”
0
П2
DIV
LIV
А’
D’
SIV
У
B’
L’
NIV
KIV
FIV
S’
N’
MIV
K’
E’
E
IV
M’
F’
E’
C’
CIV

S
R1
R1
Z
S”
R1
D
D
R1
B”
А”
R
R1
R
L

L”
N”
M”
C”
П1
F
N”
D”
F”
M”
П1
A
BIV
П4
R
E” E”
0
П2
E
R
IV
R
DIV
LIV
А’
D’
У
B’
L’
SIV
NIV
KIV
R
FIV
M
S’ K’
N’
EIV
M’
F’
E’
CI
V
C’
IV
D
Зная натуральную величину ребра
пирамиды, строят ее развертку.

S
RL
RL
L
Z
S”
L
RN
RM
D
B”
А”
RN
L

RL
N
RM
П1
M
L”
N”
F
N”
M”
C”
D”
F”
D
M”
П1
A
П4
IV
B
E
IV
E” E”
0
П2
DIV
LIV
А’
D’
У
B’
L’
SIV
NIV
KIV
FIV
MIV
S’ K’
N’
E
IV
M’
F’
E’
CI
V
C’
D
На ребрах и на гранях пирамиды
(на развертке) определяют
вершины пространственной
ломанной пересечения пирамиды
с плоскостью.

S
M
L
L
Z
S”
R1
D
B”
D
R
R1
N
А”
R
L

L”
N”
П1
F
N”
M”
C”
D”
F”
M
M”
П1
E
A
BIV
IV
П4
E” E”
0
П2
DIV
LIV
А’
D’
У
B’
L’
SIV
NIV
KIV
D
FIV
MIV
S’ K’
N’
Получаем развертку пирамиды.
EIV
M’
F’
E’
CI
V
C’
меню

Графическая работа №3 лист 2

Взаимное пересечение поверхностей.
Развертка конуса.
Цель работы: закрепление знаний и приобретение
навыков в решении позиционных задач на поверхности и
построение разверток поверхностей

Условие задачи.
1) построить проекции линии пересечения двух
поверхностей способом вспомогательных
секущих плоскостей.
2) построить проекции линии пересечения двух
поверхностей способом концентрических сфер.
3) построить развертку боковой поверхности
конуса с нанесением линии пересечения по
условию задачи 1 или 2.

Для выполнения данной графической работы используется лист
формата А3 (290х420 мм)

Оформляется рамкой, угловым штампом и заполнением основной надписи.

K”
S”
К’
S’
В левой половине листа намечают
изображение трех поверхностей
вращения согласно своему варианту (см.
приложение). Выбирают для двух
пересекающихся поверхностей
(имеющих параллельные оси) способ
вспомогательных секущих плоскостей, а
для двух других пересекающихся
поверхностей (имеющих
пересекающиеся оси) способ
концентрических сфер.

При решении задачи с помощью
вспомогательных секущих плоскостей
определяют точки линии пересечения
поверхностей.
Начинают построения с характерных
краевых точек линии пересечения.
K”
S”
S”
3”
2”
1”

1’
K’
S’
3’
S’
2’

K”
S”
S”
3”
1”
4”
5”
R 1’
R1
1”
2”
1’
R 1’

S’
K’
5’
3’
R1
S’
4’
2’

Проведя вспомогательные секущие
горизонтально-проецирующие плоскости
1- n, получаем в сечении каждой
поверхности окружность. Проекции двух
окружностей на горизонтальной
плоскости проекции пересекаются между
собой в двух точках 4’ и 5’,
принадлежащих искомой линии
пересечения. Фронтальные проекции
этих точек строятся с помощью линий
связи, они расположены в плоскости П2
на следе секущей плоскости.

K”
S”
S”
3”
1”
4”
5”
R1
2”
R 1’
7”
6”
R2
R 2’
1”
2”
R2 ’
R1 ’
1’
7’

5’
S’
K’
3’
R2
R1
S’
4’
6’
2’

K”
S”
S”
3”
1”
4”
5”
R1
2”
R 1’
7”
6”
R2
3”
R 2’
9”
8”
R 3’
R3
1”
2”
R3 ’
R2 ’
9’
1’

R1 ’
7’
5’
S’
K’
3’
R2
R1
S’
R3
4’
6’
8’
2’

По точкам строится линия пересечения
поверхностей вращения и
устанавливается ее видимость в
проекциях.
S”
S”
3”
1”
4”
5”
R1
2”
R 1’
7”
6”
R3
3”
R 2’
9”
8”
R 3’
R4 ’
1”
2”
R3 ’
R2 ’
9’
1’

R1 ’
7’
5’
S’
K’
3’
R2
R1
S’
R3
4’
6’
4’1
8’
2’

S”
S”
3”
1”
1”
4”
5”
R1
2”
R 1’
7”
6”
R3
3”
R 2’
9”
8”
R 3’
R4 ’
1”
2”
2”
R3 ’
R2 ’
9’
1’

R1 ’
7’
1’
5’
S’
K’
3’
R2
R1
S’
R3
4’
6’
8’
2’

2’
При решении задачи с помощью
вспомогательных концентрических сфер
необходимо выполнение следующих
условий:
обе поверхности должны быть
поверхностями вращения;
их оси должны пересекаться;
каждая ось должна быть параллельна
какой-либо плоскости проекций.
Построение начинаем с определения
характерных краевых точек 1 и 2 линии
пересечения поверхностей.

S”
S”
3”
1”
1”
R1
7”
6”
R 2’
9”
8”
R 3’
R4 ’
1”
R1
R 1’
R3
3”
3” 3”1
4”
5”
2”
Из точки пересечения осей как из центра
проводится сфера произвольного радиуса.
Она пересекает обе поверхности по
окружностям.
2”
2”
3’
R3 ’
R2 ’
9’
1’

R1
R1 ’
7’
1’
5’
S’
K’
3’
R2
R1
S’
R3
4’
6’
3’1
8’
2’

2’

S”
S”
3”
1”
1”
R1
7”
4” 4”1
6”
R 2’
R2
9”
8”
R 3’
R4 ’
1”
R1
R 1’
R3
3”
3” 3”1
4”
5”
2”
Изменяя радиус вспомогательной секущей
сферы, можно получить
последовательный ряд точек линии
пересечения.
2”
2”
3’
4’
R3 ’
R2 ’
9’
1’

R1
R1 ’
7’
1’
5’
S’
K’
2’
R2
3’
R2
R1
S’
R3
4’
6’
3’1
8’
2’

4’1

S”
S”
3”
1”
1”
R1
2”
7”
4” 4”1
6”
R 2’
R2
9”
8”
5” 5”1
R3
R 3’
R4 ’
1”
R1
R 1’
R3
3”
3” 3”1
4”
5”
2”
2”
3’
4’
5’
R3 ’
R2 ’
9’
1’

R1
R1 ’
7’
1’
5’
S’
K’
3’
R2
R3
R3
R1
S’
5’1
4’
6’
3’1
8’
2’

2’
R2
4’1

S”
S”
3”
1”
1”
R1
7”
4” 4”1
6”
R 2’
R2
9”
8”
5” 5”1
R3
R 3’
R4 ’
1”
R1
R 1’
R3
3”
3” 3”1
4”
5”
2”
Построив достаточное число точек для
построения линий пересечения
поверхностей и определив ее видимость в
проекциях, обводим линию пересечения
поверхностей.
2”
2”
3’
4’
5’
R3 ’
R2 ’
9’
1’

R1
R1 ’
7’
1’
5’
S’
K’
3’
R2
R3
R3
R1
S’
5’1
4’
6’
3’1
8’
2’

2’
R2
4’1

S”
S”
3”
1”
1”
R1
7”
4” 4”1
6”
R 2’
R2
9”
8”
5” 5”1
R3
R 3’
R4 ’
1”
R1
R 1’
R3
3”
3” 3”1
4”
5”
2”
В правой половине листа строят
развертку боковой поверхности конуса.
Делим окружность (основание конуса) на
12 равных частей.
2”
2”
3’
4’
5’
R3 ’
R2 ’
9’
1’

R1
R1 ’
7’
1’
5’
S’
K’
3’
R2
R3
R3
R1
S’
5’1
4’
6’
3’1
8’
2’

2’
R2
4’1

S”
S”
3”
1”
R1
R1
R 1’
7”
R 2’
R2
9”
8”
2”
2”
3’
1’

X
7’
R1
2’
1’
5’
S’
5’
R2 ’
R1’ VII
IX
9’
4’
R3 ’
VIII
K’
VI
3’
R2
XI
V
4’
S’
6’
3’1
8’
XII
2’
III
I
II
R2
R3
R1
R3

5” 5”1
R3
R 3’
R4 ’
1”
4” 4”1
6”
R3
3”
3” 3”1
4”
5”
2”
1”
IV

ИНСТРУКЦИОННАЯ КАРТА. Графическая работа №1 «Шрифт чертежный»

Графическая работа №1 «Шрифт чертежный»

Цель работы : Научиться выполнять чертежный шрифт и заполнять чертежным шрифтио основную надпись

Задание для работы:

1. Внимательно изучить образец выполнения листа

2. На миллиметровой бумаге формат А4 выполнить основную надпись (рис.1)

3. Выполнить стандартным шрифтом размера 10 GOST B буквы русского алфавита и цифры. Две строчки - прописные, две строчки - строчные, строка с цифрами.

Образец выполнения листа показан на рис.1

Надписи на чертежах должны соответствовать стандарту на шрифт. Чтобы научиться правильно писать стандартным шрифтом, необходимо изучить ГОСТ 2.304-68 и выполнить упражнения в написании букв и цифр по сетке с наклоном линии под углом 75°(миллиметровая бумага формат А4). В сетке размечаются ширина букв и расстояние между ними.

Лист располагается вертикально, Сверху и слева откладываем по 10 мм и расчерчиваем две строки для написания прописных букв. Высота строк 10 мм, расстояние между строками 7 мм. Для каждой буквы сначала вычерчиваем вспомогательные линии шириной равной ширине букв, расстояние между буквами 2 мм. Во вспомогательные линии вписываем буквы (рис.2)

Большинство строчных букв содержат элементы буквы О, поэтому необходимо научиться правильно писать эту букву. Средняя часть О на 1/3 высоты должна быть прямолинейна (рис.2)

На чертеже должны быть выдержаны необходимые соотношения толщины линий разных видов. Рекомендуется выбирать следующие толщины линий: для сплошной основной S=1 мм, для штриховой – от S|2 до S|3, для сплошной тонкой S|3, для штрихпунктирной S|3. Толщина вспомогательных линий должна быть приблизительно S|3.


Рис.2 Вычерчивание букв