Решение задач по молекулярной биологии и генетике. Наследование признаков при неполном доминировании

Последний этап решения задач – анализ полученных при скрещивании особей. Цель анализа зависит от вопроса задачи:

1) Каков генотип и фенотип ожидаемого потомства?

2) Какова вероятность появления носителя того или иного признака в потомстве?

Чтобы ответит на первый вопрос необходимо правильно решить в буквенном выражении поставленную генетическую задачу и найти все возможные генотипы и фенотипы ожидаемого потомства.

Ответ на второй вопрос связан с расчетом вероятности проявления признака. Вероятность может быть рассчитана и в процентах. В этом случае общее число потомков принимают за 100% и рассчитывают процент особей, несущих анализируемый признак.

Анализ по генотипу

В большинстве случаев при анализе генотипов потомков необходимо определить количественные соотношения между различными генотипами и записать их. Сначала выписывают все варианты генотипов с различными сочетаниями доминантных и рецессивных генов, причем одинаковые варианты объединяют и суммируют.

Пример 8.1. При моногибридном скрещивании подчеркивают количество гомозиготных доминантных, гомозиготных рецессивных и гетерозиготных организмов и записывают соотношение их.

Так, при скрещивании двух гетерозиготных организмов с генотипом Аа общее число вариантов генотипов потомков равно четырем (генотипы АА, Аа, Аа, аа). Из них одна часть особей будет гомозиготна по доминантному признаку, две – гетерозиготны, одна – гомозиготна по рецессивному гену). Анализ по генотипу должна быть записана как

1АА : 2Аа : 1аа

или проще

1 : 2 : 1

Такая запись соотношений генотипов Аа среди потомков наблюдается неоднородность по генотипу. Причем на одну особь с генотипом АА приходится две особи с генотипом Аа и одна с генотипом аа. Возникновение такой неоднородности называют расщеплением.

Анализ по фенотипу

После записи соотношения генотипов определяют фенотипическое проявление каждого из них. При анализе по фенотипу учитывают проявление доминантного признака. Если в генотипе присутствует доминантный ген, то организм с таким генотипом будет нести доминантный признак. Рецессивный признак проявится только тогда, когда организм гомозиготен по рецессивному гену. Учитывая все это, подсчитывают количество всех особей, имеющих тот или иной признак, и записывают численное соотношение их.

Пример 8.2. При моногибридном скрещивании двух организмов с генотипом Аа. Запись генотипов потомков первого поколения выглядела как

1АА : 2Ав : 1аа.

Доминантный ген А полностью подавляет проявление рецессивного гена а. Поэтому фенотип особей, имеющих генотип АА и Аа, будет одинаков: эти особи будут нести доминантный признак.

Соотношение особей с различными фенотипами будут иметь вид 3 : 1. Такая запись означает, что среди потомства наблюдается неоднородность по фенотипу и на три особи с доминантным признаком приходится одна особь с рецессивным признаком. Так как скрещивались однородные по фенотипу особи, то можно сказать, что в первом поколений произошло расщепление по фенотипу.

При определении вероятности появления в потомстве особи с определенным фенотипом необходимо найти долю таких особей среди всех возможных. В рассматриваемом примере доля особей с доминантным признаком равна 3 (1АА и 2Аа). Рассчитанная в процентах вероятность составляет 75%.

Рассмотрим как записывают соотношения генотипов и фенотипов и осуществляют расчет вероятности.

Пример 8.3. Нормальная пигментация кожи доминирует над альбинизмом. Какова вероятность появления ребенка-альбиноса в семье гетерозиготных родителей?

признак : ген

Норма : А

альбинизм : а

Решение:

норма норма

Гаметы А; а А; а F 1 АА; Аа; Аа; аа

по генотипу 1АА : 2Аа: 1аа

по фенотипу 3 норма : 1 альбинизм

Р альбинизм = 1 = 1 или 25%

По записи решения видно, что потомство будет иметь 4 следующих генотипа: АА, Аа, Аа, аа. Анализ по генотипу показывает, что среди детей первого поколения один – гомозиготный доминантный (АА), два – гетерозиготных (Аа) и один – гомозиготный рецессивный. Цифровое соотношение генотипов будет иметь вид 1: 2:1 . Анализ по фенотипу показывает, что дети с генотипом АА и Аа будут иметь доминантный признак – нормальную пигментацию кожи. Числовое соотношение детей, имеющих нормальную пигментацию и альбинизм, будет 3:1. На долю детей с альбинизмом приходится ¼ часть всех гибридов. Это значит, что вероятность (р) появления детей-альбиносов равна ¼, или 25%.

Анализ гибридов, полученных при дигибридном скрещивании, аналогичен описанию для многогибридного скрещивания. Сначала также подписывают различные варианты генотипов и одинаковые варианты суммируют. Варианты генотипов при этом могут быть самые разнообразные: дигомозиготные доминантные, дигомозиготные рецессивные, дигетерозиготные, моногетерозиготные. После подсчета результаты записывают в виде численного соотношения также, как в случае моногибридного скрещивания.

Пример 8.4. У человека нерыжий цвет волос доминирует над рыжим, а веснушки – над нормой. Гены, определяющие цвет волос и веснушчатость кожи, не сцеплены. Какой процент нерыжих веснушчатых детей можно ожидать в браке мужчины и женщины, гетерозиготных по обоим признакам?

Признак : ген

нерыжий цвет : А

рыжий цвет : а

веснушчатость : В

нормальная кожа : в

Р АаВв х АаВв

нерыжая нерыжий

веснушчатая веснушчатый

Гаметы АВ, Ав, аВ, ав АВ,Ав, аВ, ав

Для определения генотипов особей первого поколения воспользуемся решеткой Пеннета, в которой по горизонтали запишем женские гаметы, по вертикали – мужские гаметы, а в клетках решетки – генотипы особей первого поколения.

Анализ по генотипу здесь основан на подсчете и составлении числовых соотношений всех возможных вариантов генотипов особей, причем одинаковые генотипы их суммируют. В данном случае расщепление по генотипу будет иметь следующий вид:

1ААВВ: 2ААВв: 1ААвв: 2АаВВ: 4АаВв: 2Аавв: 1ааВВ: 2ааВв: 1аавв

При анализе по фенотипу выписывают возможные варианты генотипов потомков с различными сочетаниями признаков цвета шерсти с длиной шерсти. Затем для каждого сочетания признаков записывают соответствующие ему генотипы. Поэтому, определив фенотипическое проявление каждого из выше записанных генотипов, сгруппируем все их по принадлежности к какому-то определенному сочетанию признаков:

Доля нерыжих веснушчатых детей будет 9 или 56,25 %.

1) гомозиготна по рецессивному признаку

2) гомозиготна по доминантному признаку

3) гетерозиготна

4) образует два типа гамет

5) образует один тип гамет

6) чистая линия

6. Особь с генотипом АА:

1) гомозиготна по рецессивному признаку;

2) гомозиготна по доминантному признаку;

3) гетерозиготна;

4) образует два типа гамет;

5) образует один тип гамет;

6) чистая линия;

7. К менделирующим признакам у человека относятся

2) артериальное давление

3) белая прядь волос надо лбом

4) приросшая мочка уха

6) умение преимущественно владеть правой рукой

8 . Разновидности межаллельного взаимодействия генов:

1) кодоминирование

2) эпистаз

3) комплементарность

4) полное доминирование.

5) полимерия

6) неполное доминирование

9. Соотнесите генотипы людей с их группами крови:

Генотипы: группы крови:

1) I А I О А. первая группа крови

2) I О I О Б. вторая группа крови

3) I А I А В. третья группа крови

4) I В I О Г. четвёртая группа крови

Часть 3:

СИТУАЦИОННЫЕ ЗАДАЧИ

1. Определить пенетрантность аллеля, ответственного за проявление признака, если родилось 80 детей-носителей данного гена, но фенотипически проявилось у 30 потомков. а) 20% б) 75% в) 12% г) 10%

2. Могут ли родители с ахондроплазией (укорочение трубчатых костей, аутосомно-доминантный признак) иметь здорового ребенка? Если да, то с какой вероятностью?

а) да, 25% б) да, 50% в) да, 75% г) нет

3. У отца с группой крови ММ имеется ребенок с группами крови МN. Какой генотип НЕ может быть у матери ребенка?

а) NN б) MN в) MM

4. Ниже приведены различные комбинации фенотипов групп крови родителей и ребенка. Какие из них в действительности невозможны?

ОТЕЦ МАТЬ РЕБЕНОК

а) АВ А0 В

ЭТАЛОНЫ ОТВЕТОВ:

Часть 1

Часть 2

Часть 3 1 – б 2 – в 3 – в 4 – в

Дата ____________________

ЛАБОРАТОРНАЯ РАБОТА №5

Тема: Закономерности наследования признаков при ди – и полигибридном скрещивании. Независимое наследование признаков. Взаимодействие неаллельных генов

Цель занятия :

    на основании знаний основных законов Менделя и форм взаимодействия неаллельных генов уметь прогнозировать проявление признаков в потомстве.

Задачи занятия :

    уметь решать задачи на ди- и полигибридное скрещивание и на взаимодействие неаллельных генов.

Тесты контроля итогового уровня знаний (ответить на вопросы, предложенные преподавателем).

ВАРИАНТ №

1______ 6______

2______ 7______

3______ 8______

4______ 9______

5______ 10______

Количество баллов: _______

Законы Г. Менделя распространяются на признаки, наследующиеся моногенно с полным доминированием. Генотип представляет собой систему взаимодействующих генов. Взаимодействие происходит между аллельными и неаллельными ге­нами, локализованными в одной и разных хромосомах. Система генов образует сбалансированную генотипическую среду, которая влияет на функцию и проявление каждого гена. В результате фор­мируется определенный фенотип организма, все признаки которого строго координированы по времени, месту и силе проявления. Врачи должны составлять генетические схемы наследования менделирующих и неменделирующих признаков и рассчитывать вероятность их проявления в потомстве.

Вопросы для самоподготовки:

1. Закон независимого наследования признаков.

2. Гибридологический анализ при ди- и полигибридном скрещивании.

3. Условия, при которых соблюдается третий закон Г.Менделя и признаки наследуются независимо.

4. Неаллельные гены: определение, обозначение, расположение

5. Типы взаимодействия неаллельных генов. Гибридологический анализ взаимодействия неаллельных генов.

6. Дайте определение комплементарности. Какие признаки наследуются у человека комплементарно.

7. Обоснуйте явление эпистаза.

8. Какие существуют виды эпистаза?

9. Эпистатические (супрессоры, ингибиторы) и гипостатические (подавляемые) гены. Какие признаки у человека наследуются по типу эпистаза?

10. Объясните явление полимерии. Какие признаки у человека наследуются полимерно?

11. Нарушает ли взаимодействие между неаллельными генами закон независимого их наследования?

12. Объясните механизм «эффекта» положения генов, приведите примеры наследования

признаков у человека.

Основные термины

ЗАДАЧИ И МЕТОДЫ ГЕНЕТИКИ.

Генетика – достаточно молодая наука. о сновоположником ее является австрийский естествоиспытатель Грегор Мендель (1822–1884). В 1865 г. на заседании общества любителей естествознания в городе Брно (Чехия) Г. Мендель рассмотрел механизм сохранения приспособительных признаков вида в ряду поколений. В 1866 г. он опубликовал свой труд «Опыты над растительными гибридами», но эта публикация не привлекла внимания современников. Весной 1900 г. три ботаника – Г. д е Фриз в Голландии, К. Чермак в Австрии и К. Корренс в Германии – независимо друг от друга, на совершенно разных объектах, открыли важную закономерность наследования признаков в потомстве гибридов. Но оказалось, что они просто «переоткрыли» закономерности наследования, рассмотренные Г. Менделем в 1865 г. Тем не менее официальной датой рождения генетики считается все-таки 1900 г.

Генетика – наука о наследственности и изменчивости живых организмов. Наследственность – это способность организма передавать свои признаки, особенности развития следующим поколениям. Элементарной единицей наследственности являются гены, расположенные в хромосомах. Передача признаков по наследству осуществляется в процессе размножения. При половом размножении наследование признаков и особенностей развития осуществляется через половые клетки. При бесполом размножении наследование осуществляется через вегетативные клетки и споры, в которых заключены материальные основы наследственности. Характерные черты вида, породы, сорта сохраняются из поколения в поколение растениями, животными, микроорганизмами благодаря наследственности. Но при половом размножении сходства между родителями и новым поколением меньше, так как имеет место изменчивость.

Изменчивость – это свойство организма приобретать новые признаки в процессе индивидуального развития. Изменчивость дает материал для деятельности отбора и процесса эволюции. Благодаря изменчивости особи одного вида различаются между собой. Появление новых признаков у особей одного вида зависит от изменения материальных основ наследственности организма и от внешних условий, воздействующих на организм.

Совокупность всех наследственных признаков организма (генов) называется генотипом .

Совокупность проявившихся в процессе жизнедеятельности признаков организма (внешних и внутренних) получила название фенотипа . Следовательно, фенотип обусловлен генотипом, но внешние условия существования организмов, в которых реализуется генотип, могут в значительной степени определять проявление тех или иных признаков. Особи одного вида, имеющие одинаковый генотип, могут отличаться друг от друга в зависимости от условий существования и развития. Можно сделать вывод, что фенотип развивается при взаимодействии генотипа и условий внешней среды.

Основной задачей генетики является изучение таких важных проблем, как хранение, передача, реализация и изменчивость наследственной информации. Для решения этих проблем используются следующие методы.

Наиболее широко в генетике используется гибридологический метод изучения наследственности.

Основные черты гибридологического метода:

1) Г. Мендель учитывал не весь многообразный комплекс признаков у родителей и их потомков, а выделял и анализировал наследование по отдельным признакам;

2) был проведен точный количественный учет наследования каждого признака в ряду последовательных поколений;

3) Г. Менделем был прослежен характер потомства каждого гибрида в отдельности.

Для своих исследований Г. Мендель избрал горох, так как это растение имеет много хорошо отличающихся признаков (форма семян, цвет семян и цветков); для гороха характерно самоопыление, что позволило Менделю проанализировать потомство каждой особи отдельно. Для скрещивания Г. Мендель подбирал растения, обладающие парами альтернативных (взаимоисключающих) признаков.

Подробно рассмотрим моногибридное скрещивание. Классическим примером моногибридного скрещивания является скрещивание растений гороха, имеющих желтые и зеленые семена.

При скрещивании сорта гороха, имеющего желтые семена, с растением, имеющим зеленые семена, все потомство первого поколения получилось с желтыми семенами. При скрещивании растений гороха с морщинистыми и гладкими семенами все потомство оказалось с гладкими семенами. Обнаруженная Г. Менделем закономерность получила название правила единообразия гибридов первого поколения, или закона доминирования (I закон Менделя).

Признак, который проявляется в первом поколении, получил название доминантного (желтая окраска семян, гладкая поверхность семян), а признак непроявившийся (подавленный признак) – рецессивного (зеленая окраска, морщинистая поверхность семян). Мендель для записи результатов скрещивания ввел генетическую символику; Р – родители; – женская особь; – мужская особь; х – знак скрещивания; G – гаметы; F – потомство; гибриды первого, второго и последующих поколений обозначаются буквой F с цифрой внизу – F 1 , F 2 , F 3 …; буквами латинского алфавита А, а, В, в, С, с, Д, d… обозначаются отдельно взятые наследственные признаки, при этом доминантные признаки обозначаются заглавными буквами А, В, С, Д,…, а рецессивные признаки – соответственно а, b, с, d…

Составляя схему скрещивания, необходимо помнить, что каждая соматическая клетка имеет диплоидный набор хромосом. Все хромосомы парны. Гены, определяющие альтернативное развитие одного и того же признака и расположенные в идентичных участках гомологичных хромосом, называют аллельными генами, или аллелями. В зиготе всегда два аллельных гена, и генотипическую формулу по любому признаку необходимо записывать двумя буквами. Если какая-либо пара аллелей представлена двумя доминантными (АА) или двумя рецессивными (аа) генами, такой организм называется гомозиготным. Если в одной и той же аллели один ген доминантный, а другой рецессивный, то такой организм называют гетерозиготным (Аа).

Генетическая запись осуществляется следующим образом:

Из приведенной схемы скрещивания мы видим, что гибриды первого поколения единообразны по доминантному признаку. Эта закономерность, как уже говорилось, известна как I закон Менделя: при скрещивании двух гомозиготных организмов, отличающихся друг от друга альтернативным вариантом одного и того же признака, все гибриды первого поколения окажутся единообразными как по фенотипу, так и по генотипу, и будут нести в генотипе признаки обоих родителей.

Проведенные Менделем опыты показали, что доминантный ген проявляется как в гомозиготном, так и в гетерозиготном состоянии, а рецессивный ген – только в гомозиготном состоянии.

Затем Г. Мендель провел скрещивание гибридов первого поколения между собой и получил следующие результаты: из 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых. Такое же соотношение было получено и при других вариантах скрещивания между гибридами первого поколения. Исходя из этого Мендель пришел к выводу, что во втором поколении наблюдается расщепление признаков в соотношении 3: 1, то есть 75 % особей несут доминантные признаки, а 25 % – рецессивные.

Произведем генетическую запись данного скрещивания:

Мы видим, что по фенотипу произошло расщепление 3: 1, а по генотипу 1АА: 2Аа: 1аа.

Эта закономерность получила название правила расщепления гидридов второго поколения, или II закона Менделя , который формулируется следующим образом: при скрещивании двух гетерозиготных особей (гибридов Аа), имеющих пару альтернативных вариантов одного признака, в потомстве происходит расщепление по этому признаку в соотношении 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Запись скрещивания можно производить еще одним способом, с использованием так называемой решетки Пеннета, которую предложил английский генетик Пеннет. Принцип построения решетки прост: по горизонтальной линии вверху записывают гаметы женской особи, а по вертикали слева – гаметы мужской особи, и на пересечении вертикальных и горизонтальных строк определяют генотип и фенотип потомков.

Произведем генетическую запись рассмотренных примеров с использованием решетки Пеннета.

Как правило, генетическую запись с использованием решетки Пеннета применяют при анализе более сложных скрещиваний. Нам же она позволяет легко разобраться, почему потомство первого поколения единообразно, а во втором поколении произошло расщепление.

Гены, как известно, расположены в хромосомах. В рассмотренном примере растение гороха с желтыми семенами в какой-то паре гомологичных хромосом несет пару аллелей желтой окраски. В результате мейоза гомологичные хромосомы расходятся в различные гаметы, а с ними и аллельные гены (желтой окраски семян). Так как у гомозиготы (АА) оба аллельных гена одинаковы, все гаметы несут этот ген. Точно так же и с растениями, имеющими зеленую окраску семян (аа): оба аллельных гена одинаковы, следовательно гаметы несут один и тот же ген. Делаем вывод: гомозиготная особь всегда дает один тип гамет.

Таким образом, если материнская особь (АА) дает один тип гамет (А) и отцовская особь (аа) дает один тип гамет (а), значит возможно лишь одно сочетание гамет – Аа, то есть все гибриды первого поколения единообразны и являются гетерозиготными по этому признаку (окраске семян). Фенотипически все растения будут с желтыми семенами. При скрещивании двух гетерозигот (Аа) у каждой особи в равном количестве образуются гаметы с доминантным геном (А) и рецессивным геном (а), из чего следует ожидать четыре возможные комбинации зигот. Яйцеклетка с геном (А) может быть оплодотворена сперматозоидом как с доминантным геном (А), так и с рецессивным геном (а); точно так же яйцеклетка с геном (а) может быть с одинаковой долей вероятности оплодотворена сперматозоидом с геном (А) и геном (а). В результате образуются четыре зиготы: АА: Аа: аА: аа. Мы видим, что по фенотипу получили 3 особи с доминантными признаками и одну особь с рецессивным, то есть соотношение 3: 1. По генотипу же соотношение 1АА: 2Аа: 1аа. о тсюда следует, что если в дальнейшем от каждой группы особей второго поколения получать потомство при самоопылении, то гомозиготные особи АА и аа будут давать только единообразное потомство, без расщепления, а потомство особей с генотипом Аа (гетерозиготных) будет продолжать расщепляться и дальше.

Г. Мендель объяснил это тем, что гаметы генетически чисты, то есть несут только один ген из аллельной пары. На основании этого заключения Г. Мендель сформулировал закон чистоты гамет: находящиеся в каждом организме пары альтернативных признаков не смешиваются и при образовании гамет по одному переходят в них в чистом виде.

(Определение из книги: Т. Л. Богданова. Биология. Задания и упражнения. М., Высшая школа, 1991)

ЗАДАЧИ И МЕТОДЫ ГЕНЕТИКИ.
ПЕРВЫЙ И ВТОРОЙ ЗАКОНЫ Г. МЕНДЕЛЯ

Задача № 1.

Сколько типов гамет образуют особи с генотипом Вв; с генотипом ВВ; с генотипом вв?

Д а н о:

Генотипы:

1) Вв

2) ВВ

3) вв

Р е ш е н и е:

Число ожидаемых типов гамет определим по формуле: х = 2 n , где n – число пар альтернативных признаков организма, подвергаемых исследованию, а х – число типов гамет.

Найти:

количество типов гамет – ?

1) Вв – генотип особи.

Одна пара альтернативных признаков.

Определяем число сочетаний гамет: х = 2 1 , отсюда х = 2 (В, в).

2) ВВ – генотип особи; нет альтернативных признаков.

х = 2 0 , отсюда х = 1 (В).

3) вв – генотип особи; нет альтернативных признаков.

Определим число сочетаний гамет: х = 2 0 , отсюда х = 1 (в).

О т в е т: 2 типа гамет; 1 тип гамет; 1 тип гамет.

Задача № 2.

Сколько типов гамет образует особь: а) гомозиготная по рецессивному гену? б) гомозиготная по доминантному гену? в) гетерозиготная?

Д а н о:

Генотипы:

1) аа

2) АА

3) Аа

Р е ш е н и е:

а) аа – генотип особи

х = 2 0 = 1 (а)

б) АА – генотип особи

х = 2 0 = 1 (А)

в) Аа – генотип особи

х = 2 1 = 2 (А, а)

Найти:

х – ?

О т в е т: а) 1 тип гамет; б) 1 тип гамет; в) 2 типа гамет.

Задача № 3.

Гладкая окраска арбузов наследуется как рецессивный признак. Какое потомство получится от скрещивания двух гетерозиготных растений с полосатыми плодами?

Задача № 4.

Найдите возможные варианты гамет для организмов со следующими генотипами: АА, Вв, Сс, ДД.

Д а н о:

Генотипы:

АА, Вв, Сс, ДД

Р е ш е н и е:

1) АА – гомозиготный организм, образует один тип гамет: А.

2) Вв – гетерозиготный организм, образует два типа гамет: В и в.

3) Сс – гетерозиготный организм, образует два типа гамет: С и с.

Н а й т и:

возможные варианты гамет – ?

4) ДД – гомозиготный организм, образует один тип гамет: Д.

О т в е т: 1) А; 2) В, в; 3) С, с; 4) Д.

Задача № 3.

Определите генотипы и фенотипы потомства от брака кареглазых гетерозиготных родителей.

Примечание: если в задаче речь идет о людях, то вводятся следующие обозначения родителей: ○ – женщины; □ – мужчины.

О т в е т: 1АА: 2Аа: 1аа; 3 детей с карими и один с голубыми глазами.

Задача № 4.

Умение человека владеть преимущественно правой рукой доминирует над умением владеть преимущественно левой рукой. Мужчина-правша, мать которого была левшой, женился на женщине-правше, имевшей трех братьев и сестер, двое из которых левши. о пределите возможные генотипы женщины и вероятность того, что дети, родившиеся от этого брака, будут левшами.

О т в е т: если женщина гомозиготна, то вероятность рождения левшей будет 0, если гетерозиготна, то левшей родится 25 %.

Задача № 5.

При скрещивании гетерозиготных красноплодных томатов с желтоплодными получено 352 растения, имеющих красные плоды. о стальные растения имели желтые плоды. Определите, сколько растений имело желтую окраску?

Ответ: 352 растения.

Задача № 6.

Миоплегия (периодические параличи) наследуется как доминантный признак. Определите вероятность рождения детей с аномалиями в семье, где отец гетерозиготен, а мать не страдает миоплегией.

О т в е т: вероятность рождения детей с аномалиями составит 50 %.

Задача № 7.

У томатов ген, определяющий красную окраску плодов, доминантен по отношению к гену желтой окраски. Полученный из гибридных семян 3021 куст томатов имел желтую окраску, а 9114 – красную.

Вопрос: а) сколько гетерозиготных растений среди гибридов? б) относится ли данный признак (окраска плодов) к менделирующим?

2) Подсчитаем количество гетерозиготных растений, составляющих 2/3 от числа всех красноплодных:

(9114: 3) · 2 = 6742 растения.

3) Признак «окраска плодов» относится к менделирующим, так как соотношение кустов с желтыми и красными плодами составляет 1: 3, то есть подчиняется второму закону Менделя.

О т в е т: а) 6742 растения; б) относится.

Задача № 8.

Ген черной окраски тела крупного рогатого скота доминирует над геном красной окраски. Какое потомство можно ожидать от скрещивания: а) двух гетерозиготных особей? б) красного быка и гибридной коровы?

О т в е т: а) 75 % черных телят, 25 % красных телят;

б) 50 % черных телят, 50 % красных телят.

ДИГИБРИДНОЕ СКРЕЩИВАНИЕ.
ТРЕТИЙ ЗАКОН МЕНДЕЛЯ

Дигибридным называют скрещивание, в котором участвуют особи, отличающиеся по двум парам аллелей. Г. Мендель скрещивал два сорта гороха – с гладкими желтыми семенами и с зелеными морщинистыми. Гибриды первого поколения все имели гладкие желтые семена, так как в I поколении всегда проявляются только доминантные признаки. При скрещивании гибридов первого поколения между собой обнаружилось расщепление: 315 желтых гладких семян, 101 – желтых морщинистых, 108 – зеленых гладких, 32 – зеленых морщинистых.

Проанализируем полученные результаты скрещивания: как мы видим, при скрещивании гомозиготных форм гибриды первого поколения единообразны, как и при моногибридном скрещивании; во втором же поколении происходит расщепление признаков и образуются четыре различные по фенотипу группы особей (желтые гладкие, желтые морщинистые, зеленые гладкие, зеленые морщинистые), причем соотношение их фенотипов 9: 3: 3: 1. Мы видим, что при дигибридном скрещивании происходит увеличение числа фенотипов вдвое по сравнению с моногибридным скрещиванием. Если же мы рассмотрим соотношение каждого признака в отдельности, то увидим, что оно составляет 3: 1, как и при моногибридном скрещивании, то есть расщепление по каждому признаку происходит независимо. Исходя из этого Г. Мендель сформулировал III закон – закон независимого наследования признаков: расщепление по каждой паре признаков идет независимо от других пар признаков.

Рассмотрим цитологические основы III закона Менделя. Два гомозиготных растения гороха с генотипами ААВВ (желтые гладкие семена) и аавв (зеленые морщинистые семена) образуют по одному типу гамет – АВ и ав . В результате их скрещивания потомство будет единообразным – АаВв (желтые гладкие семена). При скрещивании же гибридов первого поколения между собой каждое растение образует четыре типа гамет, причем из каждой пары аллельных генов в гамету попадает только один. В результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В , образуя тип гамет АВ , или с геном в (образуя второй тип гамет – Ав ), а ген а может объединиться с геном В (образуя третий тип гамет – аВ ) или с геном в (образуя четвертый тип гамет – ав ):

Во время оплодотворения каждый из четырех типов гамет (АВ, Ав, аВ, ав) одного организма может встретиться с любой из гамет (АВ, Ав, аВ, ав) другого организма. Все возможные сочетания мужских и женских гамет легко установить с помощью решетки Пеннета.

По генотипу: 1ААВВ: 2ААВв: 2АаВВ: 4АаВв: 1А а вв: 2Аавв: 1ааВВ: 2 ааВв: 1аавв.

Как уже говорилось, полученные гибриды во втором поколении имеют следующее соотношение фенотипов: 9 частей – желтые гладкие, 3 – зеленые гладкие, 3 – желтые морщинистые и 1 часть зеленые морщинистые. При этом признаки наследуются независимо друг от друга и по каждому из них наблюдается обычное расщепление – 3: 1.

Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как в моногибридном скрещивании, то есть независимо от другой пары признаков. Такое расщепление получается при полном доминировании по каждой паре признаков. При полигибридном скрещивании (родительские формы отличаются по нескольким или многим признакам) расщепление по каждому признаку получается таким же.

ЗАДАЧИ НА ДИГИБРИДНОЕ
И АНАЛИЗИРУЮЩЕЕ СКРЕЩИВАНИЕ

Задача № 1.

Написать возможные типы гамет, продуцируемых организмами со следующими генотипами: а) ААВВ, б) СсДД, в) ЕеFf;
г) ддhh (гены наследуются независимо).

О т в е т: а) АВ; б) СД, сД; в) Е f , Ef, eF, еf; г) дh.

Задача № 2.

Нормальный рост у овса доминирует над гигантизмом, а раннеспелость – над позднеспелостью. Гены обоих признаков находятся в разных парах хромосом. Какими признаками будут обладать гибриды, полученные от скрещивания гетерозиготных по обоим признакам родителей? Каков фенотип родительских особей?

О т в е т: Р – нормальные, раннеспелые растения овса;

F 1 : 9 частей нормального роста, раннеспелых; 3 – нормального роста, поздеспелых; 3 – гигантских раннеспелых; 1 часть гигантских позднеспелых.

Задача № 3.

У дрозофилы серая окраска тела и наличие щетинок – доминантные признаки, которые наследуются независимо. Какое потомство следует ожидать от скрещивания желтой самки без щетинок с гетерозиготным по обоим признакам самцом?

О т в е т: 25 % – серые, без щетинок; 25 % – серые, с щетинками; 25 % – желтые, с щетинками; 25 % – желтые, без щетинок.

Задача № 4.

При скрещивании черного петуха без хохла с бурой хохлатой курицей все потомство оказалось черным и хохлатым. Определите генотипы родителей и потомства. Какие признаки являются доминантными? Какой процент бурых без хохла цыплят получится в результате скрещивания между собой гибридов первого поколения?

3) Определим процент бурых без хохла цыплят:

О т в е т: Р 1 : аа вв , аа вв; F 1 : АаВв;

Р 2 : АаВв, АаВв;

F 2 : 1ААВВ: 2ААВв: 2АаВВ: 4АаВв: 1А а вв: 2Аавв: 1ааВВ: 2ааВв: 1аавв; доминантные признаки – черный цвет оперения и наличие хохла; бурых без хохла цыплят получится 6 %.

Задача № 5.

Тыкву, имеющую желтые плоды дисковидной формы, скрестили с тыквой, у которой были белые шаровидные плоды. Все гибриды от этого скрещивания имели белую окраску и дисковидную форму плодов. Какие признаки доминируют? Каковы генотипы родителей и потомства?

О т в е т: Р: аа вв , аа вв; F 1 : АаВв; доминантные признаки –белая окраска и дисковидная форма плодов.

Задача № 6.

Полидактилия (многопалость) и отсутствие малых коренных зубов передаются как доминантные признаки. Гены этих признаков находятся в разных парах хромосом. Какова вероятность рождения детей без аномалий в семье, где оба родителя страдают обеими болезнями и гетерозиготны по этим парам генов?

О т в е т: вероятность рождения детей без аномалий 1/16.

Задача № 7.

У человека некоторые формы близорукости доминируют над нормальным зрением, а карий цвет глаз – над голубым. Какое потомство можно ожидать от брака близорукого кареглазого мужчины с голубоглазой женщиной с нормальным зрением? Определите все возможные генотипы родителей и потомства.

25 % – нормальное зрение кареглазые

25 % – нормальное зрение голубоглазые

О т в е т: 1) Р: аавв, аавв ; F 1 : АаВв;

2) Р: аавв, а а вв ; F 1 : АаВв, аа в в;

3) Р: аавв, аав в; F 1 : АаВв, а авв;

4) Р: аавв, а а в в; F 1 : АаВв, а авв, ааВв, аавв.

Задача № 8.

Некоторые формы катаракты и глухонемоты у человека передаются как рецессивные несцепленные признаки.

В о п р о с ы:

1. Какова вероятность рождения детей с двумя аномалиями в семье, где оба родителя гетерозиготны по двум парам генов?

2. Какова вероятность рождения детей с двумя аномалиями в семье, где один из родителей страдает катарактой и глухонемотой, а второй супруг гетерозиготен по этим признакам?

О т в е т: в первом случае вероятность рождения детей с двумя аномалиями составит 1/16, или 6 %, во втором – ¼, или 25 %.

Задача № 9.

Глаукома (заболевание глаз) имеет две формы: одна форма определяется доминантным геном, а другая – рецессивным. Гены расположены в разных хромосомах. Какова вероятность рождения больного ребенка в семье:

а) где оба супруга страдают разными формами глаукомы и гомозиготны по обеим парам генов;

б) где оба супруга гетерозиготны по обеим парам генов?

О т в е т: а) 100 % больных детей;

б) 13/16 больных детей, или 81 %.

Задача № 10.

У львиного зева красная окраска цветка неполно доминирует над белой. Гибридное растение имеет розовую окраску. Нормальная форма цветка полностью доминирует над пилорической. Какое потомство получится от скрещивания двух дигетерозиготных растений?

О т в е т: 3/16 – красные цветы нормальной формы;

6/16 – розовые цветы нормальной формы;

1/16 – красные цветы пилорической формы;

2/16 – розовые цветы пилорической формы;

3/16 – белые цветы нормальной формы;

1/16 – белые цветы пилорической формы.

Наследственность и изменчивость – свойства организмов. Генетика как наука


Наследственность – способность организмов передавать свои признаки и особенности развития потомству.
Изменчивость – разнообразие признаков среди представителей данного вида, а также свойство потомков приобретать отличия от родительских форм.
Генетика – наука о закономерностях наследственности и изменчивости.

2. Охарактеризуйте вклад известных вам ученых в развитие генетики как науки, заполнив таблицу.

История развития генетики

3. Какие методы генетики как науки вам известны?
Основной метод генетики – гибридологический. Это скрещивание определенных организмов и анализ их потомства. Этот метод использовал Г. Мендель.
Генеалогический – изучение родословных. Позволяет определить закономерности наследования признаков.
Близнецовый – сравнение однояйцевых близнецов, позволяет изучать модификационную изменчивость (определять воздействие генотипа и среды на развитие ребенка).
Цитогенетический – изучение под микроскопом хромосомного набора – числа хромосом, особенностей их строения. Позволяет выявлять хромосомные болезни.

4. В чем состоит сущность гибридологического метода изучения наследования признаков?
Гибридологический метод – один из методов генетики, способ изучения наследственных свойств организма путем скрещивания его с родственной формой и последующим анализом признаков потомства.

5. Почему горох можно считать удачным объектом генетических исследований?
Виды гороха отличаются друг от друга малым количеством хорошо отличимых признаков. Горох легко выращивать, в условиях Чехии он размножается несколько раз в год. Кроме того, в природе горох является самоопылителем, но в эксперименте самоопыление легко предотвратить, и исследователь легко может опылить растение одной пыльцой с другого растения.

6. Наследование каких пар признаков у гороха изучал Г. Мендель?
Мендель использовал 22 чистые линии гороха. Растения этих линий имели сильно выраженные отличия друг от друга: форма семян (круглые – морщинистые); окраска семян (желтые – зеленые); форма бобов (гладкие – морщинистые); расположение цветков на стебле (пазушные – верхушечные); высота растения (нормальные – карликовые).

7. Что понимают в генетике под чистой линией?
Чистая линия в генетике – это группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей.

Закономерности наследования. Моногибридное скрещивание

1. Дайте определения понятий.
Аллельные гены – гены, ответственные за проявление одного признака.
Гомозиготный организм – организм, содержащий два одинаковых аллельных гена.
Гетерозиготный организм – организм, содержащий два различных аллельных гена.

2. Что понимают под моногибридным скрещиванием?
Моногибридное скрещивание - скрещивание форм, отличающихся друг от друга по одной паре альтернативных признаков.

3. Сформулируйте правило единообразия гибридов первого поколения.
При скрещивании двух гомозиготных организмов, отличающихся друг от друга одним признаком, все гибриды первого поколения будут иметь признак одного из родителей, и поколение по данному признаку будет единообразным.

4. Сформулируйте правило расщепления.
При скрещивании двух потомков (гибридов) первого поколения между собой во втором поколении наблюдается расщепление и снова появляются особи с рецессивными признаками; эти особи составляют ¼ часть от всего числа потомков первого поколения.

5. Сформулируйте закон чистоты гамет.
При образовании в каждую из них попадает только один из двух «элементов наследственности», отвечающий за данный признак.

6. Используя общепринятые условные обозначения, составьте схему моногибридного скрещивания.


Охарактеризуйте на данном примере цитологические основы моногибридного скрещивания.
Р – родительское поколение, F1 – первое поколение потомков, F2 – второе поколение потомков, А – ген, отвечающий за доминантный признак, а – ген, отвечающий за рецессивный признак.
В результате мейоза в гаметах родительских особей будет присутствовать по одному гену, отвечающему за наследование определенного признака (А или а). В первом поколении соматические клетки будут гетерозиготными (Аа), поэтому половина гамет первого поколения будет содержать ген А, а другая половина – ген а. В результате случайных комбинаций гамет во втором поколении возникнут следующие комбинации: АА, Аа, аА, аа. Особи с тремя первыми комбинациями генов будут иметь одинаковый фенотип (из-за наличия доминантного гена), а с четвертой – иной (рецессивный).

7. Решите генетическую задачу на моногибридное скрещивание.
Задача 1.
У арбуза зеленая окраска плода доминирует над полосатой. От скрещивания зеленоплодного сорта с полосатоплодным получены гибриды первого поколения, имеющие плоды зеленой окраски. Гибриды переопылили и получили 172 гибрида второго поколения. 1) Сколько типов гамет образует растение зеленоплодного сорта? 2) Сколько растений F2 будут гетерозиготными? 3) Сколько разных генотипов будет в F2? 4) Сколько в F2 будет растений с полосатой окраской плодов? 5) Сколько гомозиготных растений с зеленой окраской плодов будет в F2?
Решение
А – зеленая окраска, а – полосатая окраска.
Так как при скрещивании растений с зелеными и полосатыми плодами получили растения с зеленым плодом, можно сделать вывод, что родительские особи были гомозиготными (АА и аа) (по правилу единообразия гибридов первого поколения Менделя).
Составим схему скрещивания.


Ответы:
1. 1 или 2 (в случае гетерозиготы)
2. 86
3. 3
4. 43
5. 43.

Задача 2.
Длинная шерсть у кошек рецессивна по отношению к короткой. Длинношерстная кошка, скрещенная с гетерозиготным короткошерстным котом, принесла 8 котят. 1) Сколько типов гамет образуется у кота? 2) Сколько типов гамет образуется у кошки? 3) Сколько фенотипически разных котят в помете? 4) Сколько генотипически разных котят в помете? 5) Сколько котят в помете с длинной шерстью?
Решение
А – короткая шерсть, а – длинная шерсть. Так как у кошки была длинная шерсть, она гомозиготна, ее генотип аа. У кота генотип Аа (гетерозиготный, короткая шерсть).
Составим схему скрещивания.


Ответы:
1. 2
2. 1
3. 4 с длинной и 4 с короткой
4. 4 с генотипом Аа, и 4 с генотипом аа
5. 4.

Множественные аллели. Анализирующее скрещивание

1. Дайте определения понятий.
Фенотип – совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития в данных условиях и являются результатом взаимодействия генотипа с комплексом факторов внутренней и внешней среды.
Генотип – это совокупность всех генов организма, являющихся его наследственной основой.

2. Почему понятия о доминантном и рецессивном генах являются относительными?
У гена какого-либо признака могут быть и другие «состояния», которые нельзя назвать ни доминантными, ни рецессивными. Это явление может произойти в результате мутаций и называется «множественный аллелизм».

3. Что понимают под множественным аллелизмом?

Множественный аллелизм - это существование в популяции более двух аллелей данного гена.

4. Заполните таблицу.

Типы взаимодействия аллельных генов


5. Что такое анализирующее скрещивание и каково его практическое значение?
Анализирующее скрещивание используют для установления генотипа особей, которые не различаются по фенотипу. При этом особь, генотип которой нужно установить, скрещивают с особью, гомозиготной по рецессивному гену (аа).

6. Решите задачу на анализирующее скрещивание.
Задача.

Белая окраска венчика у флокса доминирует над розовой. Скрещено растение с белой окраской венчика с растением, имеющим розовую окраску. Получено 96 гибридных растений, из которых 51 имеет белую окраску, а 45 – розовую. 1) Какие генотипы имеют родительские растения? 2) Сколько типов гамет может образовывать растение с белой окраской венчика? 3) Сколько типов гамет может образовывать растение с розовой окраской венчика? 4) Какое соотношение по фенотипу можно ожидать в поколении F2 от скрещивания между собой гибридных растений F1 с белыми цветками?
Решение.
А – белая окраска, а – розовая окраска. Генотип одного растения А.. – белый, второго аа – розовый.
Так как в первом поколении наблюдается расщепление 1:1 (51:45), генотип первого растения Аа.
Составим схему скрещивания.

Ответы:
1. Аа и аа.
2. 2
3. 1
4. 3 с белым венчиком:1 с розовым венчиком.

Дигибридное скрещивание

1. Дайте определения понятий.
Дигибридное скрещивание – скрещивание особей, у которых учитывают отличия друг от друга по двум признакам.
Решетка Пеннета – это таблица, предложенная английским генетиком Реджинальдом Пеннетом в качестве инструмента, представляющего собой графическую запись для определения сочетаемости аллелей из родительских генотипов.

2. Какое соотношение фенотипов получается при дигибридном скрещивании дигетерозигот? Ответ проиллюстрируйте, расписав решетку Пеннета.
А – Желтая окраска семян
а – Зеленая окраска семян
В – Гладкая форма семян
в – Морщинистая форма семян.
Желтый гладкий (ААВВ) × Зеленый морщинистый (аавв) =
Р: АаВв×АаВв (дигетерозиготы)
Гаметы: АВ, Ав, аВ, ав.
F1 в таблице:

Ответ: 9 (желтых гладких):3 (зеленых гладких):3 (желтых морщинистых):1 (зеленых морщинистых).

3. Сформулируйте закон независимого наследования признаков.
При дигибридном скрещивании гены и признаки, за которые эти гены отвечают, наследуются независимо друг от друга.

4. Решите генетические задачи на дигибридное скрещивание.
Задача 1.

Черная окраска у кошек доминирует над палевой, а короткая шерсть – над длинной. Скрещивались чистопородные персидские кошки (черные длинношерстные) с сиамскими (палевые короткошерстные). Полученные гибриды скрещивались между собой. Какова вероятность получения в F2 чистопородного сиамского котенка; котенка, фенотипически похожего на персидского; длинношерстного палевого котенка (выразить в частях)?
Решение:
А – черная окраска, а – палевая.
В – короткая шерсть, в – длинная.

Составим решетку Пеннета.

Ответ:
1) 1/16
2) 3/16
3) 1/16.

Задача 2.

У томатов округлая форма плодов доминирует над грушевидной, а красная окраска плодов – над желтой. От скрещивания гетерозиготного растения с красной окраской и грушевидной формой плодов и желтоплодного с округлыми плодами получено 120 растений. 1) Сколько типов гамет образует гетерозиготное растение с красной окраской плодов и грушевидной формой? 2) Сколько разных фенотипов получилось от такого скрещивания? 3) Сколько разных генотипов получилось от такого скрещивания? 4) Сколько получилось растений с красной окраской и округлой формой плодов? 5) Сколько растений получилось с желтой окраской и округлой формой плодов?
Решение
А – округлая форма, а – грушевидная форма.
В – красная окраска, в – желтая окраска.
Определим генотипы родителей, типы гамет и запишем схему скрещивания.

Составим решетку Пеннета.


Ответ:
1. 2
2. 4
3. 4
4. 30
5. 30.

Хромосомная теория наследственности. Современные представления о гене и геноме

1. Дайте определения понятий.
Кроссинговер – процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза.
Хромосомная карта – это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления.

2. В каком случае происходит нарушение закона независимого наследования признаков?
При кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцепленно, так как часть из них заменяется на аллельные гены гомологичной хромосомы.

3. Напишите основные положения хромосомной теории наследственности Т. Моргана.
Ген представляет собой участок хромосомы.
Аллельные гены (гены, отвечающие за один признак) расположены в строго определенных местах (локусах) гомологичных хромосом.
Гены располагаются в хромосомах линейно, то есть друг за другом.
В процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, то есть может происходить кроссинговер.

4. Сформулируйте закон Моргана.
Гены, находящиеся в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцепленно.

5. От чего зависит вероятность расхождения двух неаллельных генов при кроссинговере?
Вероятность расхождения двух неаллельных генов при кроссинговере зависит от расстояния между ними в хромосоме.

6. Что лежит в основе составления генетических карт организмов?
Подсчет частоты кроссинговера между какими-либо двумя генами одной хромосомы, отвечающими за различные признаки, дает возможность точно определить расстояние между этими генами, а значит, и начать построение генетической карты, которая представляет собой схему взаимного расположения генов, составляющих одну хромосому.

7. Для чего составляют хромосомные карты?
При помощи генетических карт можно узнать расположение генов животных и растений и информацию из них. Это поможет в борьбе с различными неизлечимыми пока заболеваниями.

Наследственная и ненаследственная изменчивость

1. Дайте определения понятий.

Норма реакции – способность генотипа формировать в онтогенезе, в зависимости от условий среды, разные фенотипы. Она характеризует долю участия среды в реализации признака и определяет модификационную изменчивость вида.
Мутация – стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) преобразование генотипа, происходящее под влиянием внешней или внутренней среды.
2. Заполните таблицу.


3. От чего зависят пределы модификационной изменчивости?
Пределы модификационной изменчивости зависят от нормы реакции, которая обусловлена генетически и наследуется.

4. Что имеют общего и чем отличаются комбинативная и мутационная изменчивость?
Общее: оба вида изменчивости обусловлены изменениями в генетическом материале.
Отличия: комбинативная изменчивость возникает из-за рекомбинации генов во время слияния гамет, а мутационная вызвана действием на организм мутагенов.

5. Заполните таблицу.

Виды мутаций

6. Что понимают под мутагенными факторами? Приведите соответствующие примеры.
Мутагенные факторы – воздействия, приводящие к возникновениям мутаций.
Это могут быть физические воздействия: ионизирующее излучение и ультрафиолетовое излучение, повреждающее молекулы ДНК; химические вещества, нарушающие структуры ДНК и процессы репликации; вирусы, встраивающие свои гены в ДНК клетки-хозяина.

Наследование признаков у человека. Наследственные болезни у человека

1. Дайте определения понятий.
Генные заболевания – болезни, причинами которых являются генные или хромосомные мутации.
Хромосомные болезни – болезни, вызванные изменением числа хромосом или их строением.

2. Заполните таблицу.

Наследование признаков у человека


3. Что понимают под наследованием, сцепленным с полом?
Наследованием, сцепленное с полом – это наследование признаков, гены которых расположены в половых хромосомах.

4. Какие признаки у человека наследуются сцепленно с полом?
Сцепленно с полом у человека наследуются гемофилия и дальтонизм.

5. Решите генетические задачи на наследование признаков у человека, в том числе на наследование, сцепленное с полом.
Задача 1.

У человека ген длинных ресниц доминирует над геном коротких ресниц. Женщина с длинными ресницами, у отца которой были короткие ресницы, вышла замуж за мужчин с короткими ресницами. 1) Сколько типов гамет образуется у женщины? 2) Сколько типов гамет образуется у мужчин? 3) Какова вероятность рождения в данной семье ребенка с длинными ресницами (в %)? 4) Сколько разных генотипов и сколько фенотипов может быть среди детей данной супружеской пары?
Решение
А – длинные ресницы
а – короткие ресницы.
Женщины гетерозиготна (Аа), так как у отца были короткие ресницы.
Мужчина гомозиготен (аа).


Ответ:
1. 2
2. 1
3. 50
4. 2 генотипа (Аа) и 2 фенотипа (длинные и короткие ресницы).

Задача 2.

У человека свободная мочка уха доминирует над несвободной, а гладкий подбородок рецессивен по отношению к подбородку с треугольной ямкой. Эти признаки наследуются независимо. От брака мужчины с несвободной мочкой уха и треугольной ямкой на подбородке и женщины, имеющей свободную мочку уха и гладкий подбородок, родился сын с гладким подбородком и несвободной мочкой уха. Какова вероятность рождения в этой семье ребенка с гладким подбородком и свободной мочкой уха; с треугольной ямкой на подбородке (в %)?
Решение
А – свободная мочка уха
а – несвободная мочка уха
В – треугольная ямка
в – гладкий подбородок.
Так как у пары родился ребенок, с гомозиготными признаками (аавв), генотип матери Аавв, а отца – ааВв.
Запишем генотипы родителей, типы гамет и схему скрещивания.


Составим решетку Пеннета.


Ответ:
1. 25
2. 50.

Задача 3.

У человека ген, вызывающий гемофилию, рецессивен и находится в Х-хромосоме, а альбинизм обусловлен аутосомным рецессивным геном. У родителей, нормальных по этим признакам, родился сын альбинос и гемофилик. 1) Какова вероятность того, что у их следующего сына проявятся эти два аномальных признака? 2) Какова вероятность рождения здоровых дочерей?
Решение:
Х° - наличие гемофилии (рецессивен), Х – отсутствие гемофилии.
А – нормальный цвет кожи
а – альбинос.
Генотипы родителей:
Мать - Х°ХАа
Отец – ХУАа.
Составим решетку Пеннета.


Ответ: вероятность проявления признаков альбинизма и гемофилии (генотип Х°Уаа) – у следующего сына - 6,25%. Вероятность рождения здоровых дочерей – (генотип ХХАА) – 6,25%.

Задача 4.

Гипертония у человека определяется доминантным аутосомным геном, а оптическая атрофия вызывается рецессивным геном, сцепленным с полом. Женщина с оптической атрофией вышла замуж за мужчину с гипертонией, у которого отец также был с гипертонией, а мать была здорова. 1) Какова вероятность, что ребенок в этой семье будет страдать обеими аномалиями (в %)? 2) Какова вероятность рождения здорового ребенка (в %)?
Решение.
Х° - наличие атрофии (рецессивен), Х – отсутствие атрофии.
А – гипертония
а – нет гипертонии.
Генотипы родителей:
Мать - Х°Х°аа (так как больна атрофией и без гипертонии)
Отец – ХУАа (так как не болен атрофией и его отец был с гипертонией, а мать здорова).
Составим решетку Пеннета.

Ответ:
1. 25
2. 0 (только 25% дочерей не будут иметь данных недостатков, но они будут носителями атрофии и без гипертонии).

Закон Харди–Вайнберга

Мы будем рассматривать менделевские популяции :

– особи диплоидны;
– размножаются половым путем;

численность популяции бесконечно большая; а также панмиктические популяции , где случайное свободное скрещивание особей протекает при отсутствии отбора.

Рассмотрим в популяции один аутосомный ген, представленный двумя аллелями А и а .

Введем обозначения:

N – общее число особей популяции
D – число доминантных гомозигот (АА )
H – число гетерозигот (Аа )
R – число рецессивных гомозигот (аa )

Тогда: D + H + R = N.

Так как особи диплоидны, то число всех аллелей по рассматриваемому гену будет 2N.

Суммарное число аллелей А и а :

А = 2D + Н;
а = Н + 2R.

Обозначим долю (или частоту) аллеля А через p, а аллеля а – через g, тогда:

Поскольку ген может быть представлен аллелями А или а и никакими другими, то p + g = 1.

Состояние популяционного равновесия математической формулой описали в 1908 г. независимо друг от друга математик Дж.Харди в Англии и врач В.Вайнберг в Германии (закон Харди–Вайнберга).

Если p – частота гена A , а g – частота гена а , с помощью решетки Пеннета можно представить в обобщенном виде характер распределения аллелей в популяции:

Соотношение генотипов в описанной популяции:

p 2 АА : 2pgАа : g 2 аа.

Закон Харди–Вайнберга в простейшем виде:

p 2 АА + 2pgАа + g 2 аа = 1.

Задача № 36

Популяция содержит 400 особей, из них с генотипами АА – 20, Аа – 120 и аа – 260 особей. Определите частоты генов А и а .

Дано:

Решение:

N = 400
D = 20
H = 120
R = 260
p – ?
g – ?

Ответ : частота гена А – 0,2; гена а – 0,8.

Задача № 37

У крупного рогатого скота породы шортгорн рыжая масть доминирует над белой. Гибриды от скрещивания рыжих и белых – чалой масти. В районе, специализирующемся на разведении шортгорнов, зарегистрировано 4169 рыжих животных, 3780 чалых и 756 белых. Определите частоту генов рыжей и белой окраски скота в данном раойне.

Ответ : частота гена рыжей окраски – 0,7; белой – 0, 3.

Задача № 38

В выборке, состоящей из 84 000 растений ржи, 210 растений оказались альбиносами, т.к. у них рецессивные гены находятся в гомозиготном состоянии. Определите частоты аллелей А и а , а также частоту гетерозиготных растений.

Ответ : частота генов А и а – 0,5.

Задача № 40
В популяции известны частоты аллелей p = 0,8 и g = 0,2. Определите частоты генотипов.

Ответ : частота аллеля А – 0,45; аллеля а – 0,55.

Задача № 42

В стаде крупного рогатого скота 49% животных рыжей масти (рецессив) и 51% черной масти (доминанта). Сколько процентов гомо- и гетерозиготных животных в этом стаде?

Ответ : в популяции 81% особей с генотипом АА , 18% с генотпом Аа и 1% с генотипом аа .

Занимательные генетические задачи

Задача № 44. «Сказка про драконов»

У исследователя было 4 дракона: огнедышащая и неогнедышащая самки, огнедышащий и неогнедышащий самцы. Для определения способности к огнедышанию у этих драконов были проведены всевозможные скрещивания.

1. Огнедышащие родители – все потомство огнедашащее.
2. Неогнедышащие родители – все потомство неогнедышащее.
3. Огнедышащий самец и неогнедышащая самка – в потомстве примерно поровну огнедышащих и неогнедышащих дракончиков.
4. Неогнедышащий самец и огнедышащая самка – все потомство неогнедышащее.
Считая, что признак определяется аутосомным геном, установите доминантный аллель и запишите генотипы родителей.

Решение :

По скрещиванию № 4 определяем: А – неогнедышащие, а – огнедышащащие; огнедышащие – ♀ аа и ♂ аа ; неогнедышащий самец – ♂ АА ;
по скрещиванию № 3: неогнедышащая самка – ♀ Аа .

Задача № 45. «Консультант фирмы «Коктейль».

Представьте себе, что вы – консультант небольшой фирмы «Коктейль», что в буквальном переводе с английского означает «петушиный хвост». Фирма разводит экзотические породы петухов ради хвостовых перьев, которые охотно закупают владельцы шляпных магазинов во всем мире. Длина перьев определяется геном А (длинные) и а (короткие), цвет: В – черные, b – красные, ширина: С – широкие, с – узкие. Гены не сцеплены. На ферме много разных петухов и кур со всеми возможными генотипами, данные о которых занесены в компьютер. В будущем году ожидается повышенный спрос на шляпки с длинными черными узкими перьями. Какие скрещивания нужно провести, чтобы получить в потомстве максимальное количество птиц с модными перьями? Скрещивать пары с абсолютно одинаковыми генотипами и фенотипами не стоит.

Решение:

F 1: А *В *cc

1. Р: ♀ ААВВсс × ♂ ааbbсс
2. Р: ♀ ААВВсс × ♂ ААbbсс
3. Р: ♀ ААbbсс × ♂ aaВВсс и т.д.

Задача № 46. «Контрабандист».

В маленьком государстве Лисляндия вот уже несколько столетий разводят лис. Мех идет на экспорт, а деньги от его продажи составляют основу экономики страны. Особенно ценятся серебристые лисы. Они считаются национальным достоянием, и перевозить их через границу строжайше запрещено. Хитроумный контрабандист, хорошо учившийся в школе, хочет обмануть таможню. Он знает азы генетики и предполагает, что серебристая окраска лис определяется двумя рецессивными аллелями гена окраски шерсти. Лисы с хотя бы одним доминантным аллелем – рыжие. Что нужно сделать, чтобы получить серебристых лис на родине контрабандиста, не нарушив законов Лисляндии?

Решение :

Провести анализирующее скрещивание и выяснить, какие рыжие лисы гетерозиготны по аллелям окраски, перевезти их через границу;
на родине контрабандиста скрестить их друг с другом, и 1/4 потомков будет серебристой окраски.

Задача № 47. «Расстроится ли свадьба принца Уно?»

Единственный наследный принц Уно собирается вступить в брак с прекрасной принцессой Беатрис. Родители Уно узнали, что в роду Беатрис были случаи гемофилии. Братьев и сестер у Беатрис нет. У тети Беатрис растут два сына – здоровые крепыши. Дядя Беатрис целыми днями пропадает на охоте и чувствует себя прекрасно. Второй же дядя умер еще мальчиком от потери крови, причиной которой стала глубокая царапина. Дяди, тетя и мама Беатрис – дети одних родителей. С какой вероятностью болезнь может передаться через Беатрис королевскому роду ее жениха?

Решение :

Построив предполагаемое генеалогическое древо, можно доказать, что ген гемофилии был в одной из X-хромосом бабушки Беатрис; мать Беатрис могла получить его с вероятностью 0,5; сама Беатрис – с вероятностью 0,25.

Задача № 48. «Царские династии».

Предположим, что у императора Александра I в Y-хромосоме была редкая мутация. Могла ли эта мутация быть у:

а) Ивана Грозного;
б) Петра I;
в) Екатерины II;
г) Николая II?

Решение:

Сразу же вычеркнем Екатерину II, ввиду ее принадлежности к женскому полу.

Ивана Грозного вычеркнем тоже – он представитель рода Рюриковичей и к династии Романовых не принадлежал.

Ответ : мутация могла быть у Николая II.

Задача № 49. «Листая роман «Война и мир».

Предположим, что в Х-хромосоме у князя Николая Андреевича Болконского была редкая мутация. Такая же мутация была и у Пьера Безухова. С какой вероятностью эта мутация могла быть у:

а) Наташи Ростовой;
б) сына Наташи Ростовой;
в) сына Николая Ростова;
г) автора «Войны и мира»?

Ответ :

Андрей Болконский не получил от отца Х-хромосому. Его жена не была родственницей ни Болконских, ни Безуховых. Следовательно, у сына князя Андрея мутации нет.
Наташа Ростова вышла замуж за Пьера Безухова. Пьер передал X-хромосому своим дочерям, но не сыновьям. Следовательно, дочери Наташи Ростовой получили мутацию, а сыновья – нет.
Сын Николая Ростова получил свою Х-хромосому от матери – дочери старого князя Болконского (из 2 хромосом княжны Марьи мутация была только в одной, следовательно, она передала Х-хромосому своему сыну с вероятностью 50%).
Лев Николаевич: действие романа заканчивается за несколько лет до рождения Толстого, на страницах романа сам автор не появляется. Но отцом писателя был отставной офицер граф Николай Ильич Толстой, а мать – урожденная Волконская, т.е. родители писателя были прототипами Николая Ростова и его жены, урожденной Марии Болконской. Их будущий сын Лев получит мутацию с вероятностью 50%.

Задача № 50. «Спор Бендера и Паниковского».

Возник у Бендера с Паниковским спор: как наследуется окраска у волнистых попугайчиков? Бендер считает, что цвет попугайчиков определяется одним геном, имеющим 3 аллеля: С о – рецессивен по отношению к двум другим, С г и С ж кодоминантны, поэтому у попугайчиков с генотипом С о С о – белый цвет, С г С г и С г С о – голубой, С ж С ж и С ж С о – желтый и С г С ж – зеленый цвет. А Паниковский считает, что окраска формируется под действием двух взаимодействующих генов А и В . Поэтому попугайчики с генотипом А*В* – зеленые, А*bb – голубые, ааВ* –- желтые, ааbb – белые.

Они составили 3 родословные:

1. P: З × Б
2. P: З × З
3. P: З × Б

F1: З, Б
F1: Б
F1: Г, Ж, Г, Г, Ж, Ж, Ж, Г, Ж

Какие родословные могли быть составлены Бендером, какие – Паниковским?

Ответ : родословные 1 и 2 могли быть составлены Паниковским, а родословная 3 – Бендером.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

1. Багоцкий С.В. «Крутые» задачи по генетике // Биология для школьников. 2005. № 4.
2. Гуляев Г.В. Задачник по генетике. – М.: Колос, 1980.
3. Жданов Н.В. Решение задач при изучении темы: «Генетика популяций». – Киров: изд-во Пед. института, 1995.
4. Задачи по генетике для поступающих в вузы. – Волгоград: Учитель, 1995.
5. Кочергин Б.Н., Кочергина Н.А. Задачи по молекулярной биологии и генетике. – Минск: Народна асвета, 1982.
6. Краткий сборник генетических задач. – Ижевск, 1993.
7. Методическая разработка для учащихся биологического отделения ВЗМШ при МГУ «Законы Менделя». – М., 1981.
8. Методические указания для самостоятельной подготовки к практическим занятиям по общей генетике. – Пермь: изд-во Мед. института, 1986.
9. Муртазин Г.М. Задачи и упражнения по общей биологии. – М.: Просвещение, 1981.
10. Орлова Н.Н. Малый практикум по общей генетике (сборник задач). – М.: изд-во МГУ, 1985.
11. Сборник задач по биологии (учебно-методическое посо-бие). – Киров, 1998.
12. Соколовская Б.Х. Сто задач по молекулярной биологии и генетике. – Новосибирск: Наука, 1971.
13. Фридман М.В. Задачи по генетике на школьной олимпиаде МГУ // Биология для школьников. 2003. № 2.
14. Щеглов Н.И. Сборник задач и упражнений по генетике. – М.: Экоинвест, 1991.